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ABSTRACT
SNumerical solutions of supersonic viscous flows are studied by applying an
implicit time-dependent scheme to the thin-layer Navier-Stokes(TLNS) equations.
The alternating direction implicit(ADI) scheme is first formulated to solve transonic
viscous axisymmetric flows in two dimensions. The results indicate that the ADI
scheme is not efficient enough for supersenic viscous calculations,

Accordingly.\[a: spatial discretization scheme using upwi;d_-ﬁux-vector split dif-
ferencing in the streainwise direction and <entral differencing in the cross-stream
direction is chosen. Three approximate factorization schemes and one fully implicit
direct solver are considered. Of them, the diagonally dominant ADI{DDADI) and
the parabolized ADI are found to be much faster than the standard ADI procedure.
The optimum CFL number for the DDADI method is about 5000 and it provic%é!s
competitive convergence with direct solvers. In terms of CPU time requiremeﬁts,
the parabolized ADI procedure is as fast as the DDAD' method.

SThese numerical algorithms are applied:to solve Supersonic flows through coni-
cal and high expansion ratio contoured nozzles for different Reynoids numbers, wall
temperatures, and back pressures. Proper downstream boundary conditions for the
subsonic portion of the outflow are shown to allow variations of the boundary layer
thickness at the exit plane and recirculating separated flows for sufficiently high
back pressure. Excellent global mass conservations are demonstrated by using the
fully conservative form, while quasi-conservative formulations lead to unacceptably
large mass conservation errors.

Along with the investigations of Navier-Sickes algorithms,parabolized Navier-
Stokes(PNS) procedures are also studied. The PNS al;c "thms are devised from

generalized flux split TLNS equations which include both the traditional pressure

gradient split procedure and a characteristics split systern. Comparisons with TLNS




iv
results show that the characteristics-based PNS systemn gives results that are as
accurate as' pressure-gradient-split PNS procedures. The use of a safety factor in
the pressure gradient splitting is shown to cause inaccuracies anc should be avoided.

The global pressure iteration for the PNS algorithm is interpreted as an
alternating-direction procedure for the TLNS equations. This global procedure )

B -‘-’J; _is shown to be mathematically well-posed and numerically efficient.

\4.:)- Swirling viscous flows in transonic and supersonic propulsive nozzles have been
investigated numerically, The central-difference ADI and the flux-vector split algo-
rithms are utilized to solve the thin-layer Navier-Stokes equations for axisymmetric
two-dimensional flow with swirl. The effects of swirl on viscous flow are studied for
1-ozzles with mild to high expansion ratios. Both flowfield detail and integral nozzle
performance are compared to previously published inviscid calculations. The results
show that the presence of swirl has a significant effect on the flowfield and integral
nozzle performance, especially for plug nozzle and high expansion ratio nozzles.

F in;lly,'}}_:e algorithms developed for axisymmetric two-dimensional flows are
extended to solve the three-dimensional TLNS equations, The algorithms are Lased
upon DDADI splitting for the streamwise flux vector and additional approximate
factorization of the operators on the cross-stream plane. The optimum CFL number

reduces Lo the order of 10 and it gives slower convergence as compared tr corre-

sponding two-dimensional algorithms due to the approximate factorization error.
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CHAPTER 1

INTRODUCTION

Recent interest in the aerospace plane and hypersonic vehicles has revitalized
research on high-speed propulsion systems. In the design of a propulsion system,
accurate prediction of viscous supersonic flowfields together with certain physical
parameters such as thrust play a critical role. Traditionally, these parameters are
obtained from wind tunnel tests or simplified analytical models. The analytical
approach is only valid for very simple geometries and flow conditions due to the dif-
ficulties in obtaining exact solutions of the complicated governing equations. Conse-
quently, successful design has been reliant upon expensive wind tunnel experiments.
With the advancement in computational fluid dynamics (CFD) and computer ar-
chitectures, numerical computations now can be used as alternatives of experiments
for much of the configuration design process. Although wind tunnel tests continue
to be important, the trend is clearly toward the computational approach using accu-
rate numerical schemes to enhance the experimental findings. The focus of present
research is to develop accurate numerical algorithms for predicting viscous super-
sonic flowfields that occur in propulsion systems. In particular, the predictions of
supersonic flows through high expansion ratio nozzles will be emphasized.

The analysis of viscous supersonic flows would require the solution of the coimn-
pressible Navier-Stokes equations with proper boundary conditions. It is well known
that the compressible Navier-Stokes equations are very difficult to solve because

the whole equation set is strongly coupled and highly non-linear. To avoid directly

solving this stifl non-linear system, certain degrees of approximations have to be
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made. One example for this is the classical Prandtl boundary layer approach. The
Loundary lhyer assumptions allow inviscid and viscous flows to be computed in-
dependently. For supersonic flows, the governing equations for the inviscid region
are rendered hyperbolic by neglecting viscous effects. This hyperbolic equation set
can be efficiently solved by the method of characteristics (MOC) [1]. For the vis-
cous region, the pressure gradient normal to the wall is neglected from order of
magnitude considerations; thus, the Navier-Stokes equations reduce to boundary
layer equations. Numerous attempts have been made to solve the boundary layer
equations both analytically and numerically. The analytical technique given by von
Karman and Pohlhausen (2| requires assumptions of the velocity profile inside the
boundary layer and is only valid for very simple problems. The numerical solutions
of boundary layer equations, which can handle more complex problems, have been
extensively investigated since the early 1970’s. Some representative algorithms are

summarized by Anderson et al. [3}.

The classical boundary layer approach assumes the interaction between the
inviscid region and the viscous region is small; consequently, either region can be
solved independently. To take into account this interaction, some sort of inviscid-
viscous patching procedure has to be employed. One typical example of this ap-
proach is given by Ref. [4]. The patching method is based on the combination
of an inviscid MOC procedure and a boundary layer algorithm. An iterative pro-
cedure between inviscid and viscous regions is accomplished by interchanging the
wall pressure from the MOC procedure and the displacement thickness from the
boundary layer procedure until convergence is achieved. This inviscid-viscous inter-
action technique does p. -‘de an efficient algorithm to calculate viscous supersonic
flows. However, it is only valid for weak-interaction flows. For flows wilth strong

interaction, the pressure gradient normal to the wall cannot be neglected. Thus,




the boundary layer algorithm as well as the inviscid-viscous interaction procedure
are no longer applicable. One typical example of these strong interaction flows
is the supersonic flow through a high-expansion nozzle. A recent work done by
Kushida [5] indicates that the boundary layer displacement thickness inside the
nozzle can be as large as 42% of the nozzle radius at the exit. In this regime, the
inviscid-viscous patching procedure fails to describe the pressure variation inside

the boundary layer and the realistic mass flow rate, thus numerical solutions of the

Navier-Stokes equations aje recuired.

For typical viscous superscnic flowfields, the governing equation set is hyper-
bolic in the supersonic region and is elliptic in the subsonic region inside the bound-
ary layer. This mixed hyperbolic/elliptic character makes the steady Navier-Stokes
equaltions cvtreincly difficult to solve because a different numerical algorithm has to
be erap!.v»d in eech region, as we have geen in the classical approach. However, if
we consicer the unateady Navier-Stokes eq'ugt.ione. the equation set becomes hyper-
bolic in time for both supersonic and subsonic regions. Therefore, given an initial
guess of the fowfield, the solutions can be obtained by marching in time until the
steady state is reached. This procedure, generally referred to as a time-dependent
or time-iterative scheme, enables one numericai algorithm to be used throughout
the flowfield. The time-dependent concept was first applied to inviscid calcula-
tions for flows over blunt hodiea by Moretti and Abbett [6] in 1966. Since then,
time-dependent solutions have become an important segment of CI'D. The first ap-
plication in compressible viscous flows was done by MacCormack (7] in 1969. In
this early work, an explicit predictor-corrector scheme was proposed to solve the
Navier-Stokes equations. This method is very straightforward to program but it

suffers from a limitation on the time step size when only steady-state solutions are

of interest.
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Time-dependent schemes can also be implemented in an implicit fashion. The
implicit time-dependent formulation imposes no stability limitation on the size of
time steps, hence, in most cases, is superior to the explicit scheme if only steady-
state solutions are concerned. One important application of implicit time-dependent
algorithms to compressible Navier-Stokes equations is the alternating direction im-
plicit (ADI) scheme suggested by Beam and Warming (8,9, which is also noted
as the linearized block implicit (LBI) scheme by Briley and McDonald {10]. The

ADI scheme has gained popularity since the mid-70's due to its capability to solve

multi-dimensional inviscid as well as viscous flows.

W:th the progress in CFD during the past decade, numerous well-developed
algorithms are now available for compressible Navier-Stokes calculations. These
algorithms :an in general be divided into two categories according to the the type
of spatial discretizations. For those of central-difference type, Steger |11} formulated
the ADI scheme in the general coordinate system, Baldwin and Lomax [12] solved
the thin-layer Navier-Stokes (TLNS) equations with an algebraic turbulence model,
and Pulliam {13] applied the implicit ADI scheme to solve flows over airfoils. For
those of upwind-difference type, Lombard et al. [14] proposed a conservative supra-
characteristics method (CSCM) based on non-conservative flux-difference splitting,
and MacCormack developed a line Gauss-Seidel procedure based on Steger and
Warming [16] flux-vector splitting. Similar investigations are also noted by other
authors; these include the relaxation scheme by Chakravarthy [17], the LU schieme
by Yoon and Jameson (18|, the single level scheme by Lombard et al. {19], and
the diagonally dominant ADI scheme by Chang et al. [20]. Thomas and Walters
[21] used a similar relaxation procedure to solve two-dimensional viscous supersonic
flows based on van Leer's flux-vector splitting {22|. More recently, this work has

been extended to three dimensions by Newsome et al. {23].

o~ e - g = i e = o = £ T
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In developing an efficient numerical algorithm that is well suited to the vis-
cous supersonic calculations required for this study, four aspects of solutions of the

Navier-Stokes equations are considered:

1. Thealgorithm should be abl.. .o take into account the predominantiy supersonic
nature of the flowfield, and consequently give rapid convergence in the high

Reynolds number, unseparated limit.

2. For lower Reynolds number flows, proper downstream boundary conditions
have to be implemented on the subsonic portion of the exit profile so that the

Aow will respond to downstream environmental changes.

3. To predict thrust with accuracy, global mass conservation has to be ensured.

This feature is accomplished by using the strong conservative form of the gov-

erning equations.

4. The algorithm can be easily simplified to a certain extent such that a pure
space-marching procedure is allowed for high Reynolds number, vnseparated

flows. For this reason, the parabolized Navier-Stokes (PNS) procedure is also

considered in this study.

To begin with, the implicit time-dependent scheme is first applied to solve
the quasi one-dimensional Euler equations for spatial discretizations based on both
central differencing and upwind differencing. This preliminary work allows the first
assessment of algorithms in terms of computational efficiency and accuracy. Some
details of the algorithms such as effects of approximate Jacobians, and comparisons

of accuracy between first order and second order upwind schemes, will be discussed.

Two-dimensional calculations start with the application of the ADI scheme
to the axisymmetric two-dimensional TLNS equations in order to justify the ap-

propriateness of this algorithm for viscous supersonic computations. To encounter

predominantly supersonic flows, a hybrid upwind/central differencing scherne is pro-
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posed along with its Fourier stability analysis [24]. Accordingly, three approximate
factorization algorithms and one direct method are formulated for the solutions of
the discretized TLNS equations based on this hybrid differencing scheme. To verify

the accuracy of the proposed hybrid scheme, the results computed by using current

algorithms will be compared to those by the MOC procedure given in Rel. [4].

For better understanding of the effects of downstream boundary conditions
on the flowfield, supersonic flows through a conical nozzle and a kigh area ratio
contoured nozzle are computed by using the proposed algorithms. [he variation of
flow character is obtained by varying the back pressure level. In particular, back
pressure levels that are sufficiently high to produce separation ir side the nozzle are
considered in order to simulate the classical experimental charr.cieristics that are
observed when altitude nozzles are operated on sea-level thrus’ stands. The flowfield
demonstrations include both laminar and turbulert calculations. The turbulent
calculations are based on the Baldwin and Lomax model (12,25]. Comparisons

of global nass conservation between strong conservative and weak conservative

formulations are made.

Parallel to the development of Navier-Stokes algorithms, the applications of the
time-dependent scheme on PNS procedures are also studied. Parabolized iVavier-
Stokes algorithms [26-29] have proven to be very popular because of their accu-
racy and efficiency. For many flowfields, they give results that are aimost identical
to those obtained with full Navier-Stokes equations, although the CPU time re-
quired is much less than that needed for the complete equations. The basic idea
of PNS schemes is to render the steady state Navier-Stokes equations parabolic in
the streamwise direction by proper approximations. This parabolic set of equations

can then be solved by a space-marching procedure similar to the MOC procedure

used for inviscid supersonic flows. The PNS algorithms differ from the classical




boundary layer approach in that the normal pressure gradient inside the boundary
layer is retained and coupled to the pressure variation of the inviscid core flow in
the parabolized equations. Consequently, PNS schemes can handle strong inviscid-
viscous interaction flows without losing accuracy. The drawoack of PNS algorithms

is that the marching procedure fails if reverse flow is present in the flowfield (3|.

The major difference between PNS procedures and Navier-Stokes solvers is

that PNS schemes are normally formulated in terms of the steady state equations

(see, for example Ref. [26]) while Navier-Stokes schemes are generally formulated
in terms of the time-dependent equations. Because of this, it is difficult to extend a
PNS algorithm to a Navier-Stokes algorithm. In the present study, PNS algorithms
are obtained as a simplification of the time-dependent general flux split Navier-
Stokes algorithms. One advantage of this is that a number of PNS approximations
can be defined including the traditiona! Vigneron approach 126] and a new approach
based upon the physical characteristics of the equations. Furthermore, the resulting
PNS procedure still contains the temporal derivative. This requires the solutions to
be obtained by iterations in time at every streamwise station. This time-iterative
PNS procedure makes the space-marching problem well-posed and consequently

eliminates the necessity of a safety factor that occurs in the - aditicnal approach.

As a further example of the application of Navier-Stokes solvers mentioned
above, axisymmetric swirling nozzle flows are studied. Swirling flows aliead of
the combustor in ramjet applications have been suggested as a means to reduce Lhe
reattachment length of the combustor flowfield. The introduction of swirl generated
by fixed vanes located in the inlet of the dump combustor can greatly increase the
efficiency of the combustion process and thus reduce the length of the combustor
|30]. However, the residual swirling flow in the combustor will enter the exhaust

nozzle, resulting in losses in thrust and reducing the mass flow rate. Both of these




decrease the nozzle periormance. Therefore, it is important to eniderstand to what
degree swirling affects the nozzle flowfield and, subsequently, the overall nozzle
performance. Several previous investigations have considered the effects of swirl,
but have ignored the effects of viscosity. In this study, we look at the effects of swirl
as a function of nozzle Reynolds numbers.

Previous investigations of swirling nozzle flow include both quasi-one-
dimensional and axisymmetric two-dimensiona! analyses. Carpenter et. al. |31]
in an early study obtained one-dimensional results by neglecting the radial veloc-
ity component. Hoflman and co-workers {32,33] studied swirling flows in annular
propulsive rozzles by means of two-dimensional inviscid numerical technioues. To
parameterize their studies, they used four different inlet swirl profiles: free vortex,
constant angle, forced vortex, and Rankine vortex. Their calculations are based
upon the explicit MacCormack scheme [7] for the transonic flowfield, while the
method of characteristics was 'used to compute the supersonic flowfield after the
throat. They concluded that for values of swirl often encouniered 'n ramjet and
turbojet applications, the effect ¢f swirl on the nozzle performance is small and can
probably be neglected.

A recent work by Dutton [34] indicates that significant reductions in the rozile
discharge coefficient and the vacuvm stream thrust efficiency may occur fur high val-
ues of swirl at the inlet of tiie nozzle. Again, Dutton uszs the - . - MacCormack
scheme to analyze three diflerent nozzles, including a convergent-divergzent (C-D)
nozzle, an annular nozzle, and a converging nozzle. Several inlet swirl profiles were
enforced as inlet boundary conditions, and the correspnding effects of thumn were

identified. He also verified the numerical results by comparing the computed wall

static pressure with experiments for a C-D nozzle with an area ratio of .25.
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The swirling flow investigations mentioned above are all confined to inviscid
calculations. As indicated before, the boundary layer displacement thickness inside
high zrea-ratio nozzles can be very large at the exit. In this regime, the inviscid
assumption is inadequate. The present study proceeds with the numerical solutions
of viscous swirling nozzle flows by using implicit time-dependent schemes. Viscoue
caiculations are done for a series of Reynolds numbers to identify the effect of the
boundary layer on swirling nozzle flows. To place these viscous resulis in perspective
with inviscid calculations appearing in the literature, the results in the inviscid
limit are also presented aiong with those of the viscous calculations. Additional
calculations of swirling flows in high expansion nozzles are also given. Both flowfield
details and the effect of swirl on the integral nozzle performance are shown.
Finally, numerical algorithms developed for axisymmetric two dimensional
flows are extended for three-dimensional viscous supersonic calculations. Both PNS

and global Navier-Stokes procedures are demonstrated by flowfield predictions on

a three-dimensional nozzle with a rectangular cross-section.




CHAPTER 2

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO
THE ONE-DIMENSIONAL EULER EQUATIONS

This research starts with quasi one-dimensionsl calculations of compressible
flows for two reasons. First, the analytical solutiona of these flows are easily ob-
tained, and thus provide back-to-back checks of the accuracy of the numerical algo-
rithms. Second, the simplicity in the formulation of the equations allows a series of
numerical experiments to be done in order to explore the potential difficulties asso-
ciated with multi-dimensional calculations. The central-differencing as well as the
upwind-differenced Euler implicit schemes are applied to the calculation of quasi-
one-dimensional flows through a convergent-divergent nozzle. Special emphases are

placed on stability analyses of the numerical algorithms and the distinctive charac-

teristics of supersonic flows.
2.1 Governing Equations

The unsteady quasi one-dimensional Euler equations are given by

d d
5; P8) + 5-(pua) =0

3 9, 4 dp
at(pua)-&» a:(pu a)+a$ =0 (2.1)

)

E(ea) + -da—l_[(e + plual =0

where, standard fluid dynamic notations have been used. These include the density

p, velocity u, pressure p, and the cross-sectional area a. The total energy ¢ per unit
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volume is defined by

[}

1 4
c=pc+§pu

in which, ¢ is the internal energy per unit mass. For compressible flow, the perfect

gas relation is used to close the problem.

For easier implementation of numerical procedures, Eq. (2.1) is expressed in

vector form as
3 JE
Q9
ot az
where Q, E, and H are flow variables, flux vector, and source vector, respectively.

They are defined by

=H (2.2)

Q = [pa, pua, ea]”

E = |pua, (pu® + p)a, (e + p)ua]T
T
H = [O’P:_E'O]
where the superscript T refers to the transpose of the vector. Equation (2.2) is writ-
ten in strong conservative form (35|, which is preferred for numerical computations
because it conserves mass, momentum, and energy identically in the discretized
form. For flows with discontinuities, this conservative formulation allows the exis-

tence of weak solutions, thus allowing shock-capturing.

The unsteady Euler equations are hyperbolic in time and can be converted into

uncoupled characteristic equations. If we define the Jacobian matrix A by

AEEE,

and use the chain rule, Eq. (2.2) becomes

For the present one-dimensional case, A is found to be
0 1 0
A= 123y3 (3 ~4)u -1
-2 (v - 1)’ T -y~ et g
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The Jacobian matrix A can be transformed to a diagonal matrix via the similarity

transformation defined by

A=MAM"!, (2.4)

The diagonal matrix A takes the form

Ay 0 0
A= 0 /\3 0
0 0 A

where Ay,A3,and A; are eigenvalues of the matrix A. Matrices M and M~! are
composed of the left and right eigenvectors of the matrix A, respectively. For the

matrix A given above, three eigenvalues are

/\1—“
Aa=u+ec
Ad=u-c¢

in which, ¢ is the speed of sound. The left and right eigenmatrices M and M ! are

given by
! 7 7
M=1u :55(’:4-1) 2(‘:-1)
AT Kl sS o)
and

e SE 5 ]
FHOFE -0 Fara-vn F|.
FUFPL e A1+ - L

Equation (2.3) now becomes

M-t

2Q 199 _
EY + MAM .3—1' = .

If we define the characteristic variable ¢ by

Qg—shl"g-o—
ot at
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and multiply Eq. (2.2) by M~!, we have
aQ 99

_— == = H 2.5
a:‘“‘a: H (25)

where

H=M""'H.
Equation (2.5) is equivalent to the three decoupled characteristic equations
9§

aq‘o H .
—_ ~ = h. = 26
ey + A\ 32 h; 1=1,2,3 (2.6)

in which ¢, and h, are elements of Q and 4, respectively.

The procedure above demonstrates that the one-dimensional Euler equations
can be transformed into three characteristic equations with each equation governing
one-dimensional wave propagation with a specific direction. These characteristic
equations can be obtained by multiplying the governing equations in vector form
by the eigenmatrix M ~!. For subsonic flows, A\; and A3 are positive ,while A3 is
negative. The equation set possesses both right and left running characteristics.
For supersonic flows, all three eigenvalues are positive, thus the waves cen only
travel from upstrearn to downstream. As will be discussed later in this chapter, this

allows a marching procedure to be used for supersonic flow calculations.
2.2 The Central-Differencing Algorithm

To solve Eq. (2.2) numerically, the central-differencing Euler implicit scheme
is considered. Symbolically, the Euler impli¢it scheme can be expressed as

Qn+l_Qn oE n+lu )
oty - H) = (2.7)

where superscripts n + 1 imply these quantities are to be evaluated at the new time

level. If we define AQ = @Q"*' — Q", the flux vector E and the source vector Jf

can bLe linearized according to the following local Taylor series expansions

EM = E™ + AAQ (2.8)
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H™' = H™ + DAQ (2.9)

in which D is the Jacobian matrix defined by D = dH/9Q. For the present quasi

‘one-dimensional case, the matrix D is given by

0 0 0
D=3t (-audt (-1

Upon substitution of Eq. (2.8)and Eq. (2.9) into Eq. (2.7), we have
0
(I - AtD + AtB;A)AQ = -AtR (2.10)

where R is the residual vector evaluated at time level n,
oF "
=(%= _m . 2.11
R=(5-H) (2.11)
Note that all the derivatives 3/3z in Eq. (2.10) and Eq. (2.11) imply discretizations

by central differencing. The left-hand side operator of Eq. (2.10) results in a block

tri-diagonal matrix. Each block is a 3 x 3 matrix.
2.2.1 Boundary Conditions

For hyperbolic equations, the boundary conditions can be easily enforced by
using the MOC boundary procedure suggested by Rai and Chaussee (3G’ and
Chakravarthy {37]. As indicated earlier, the governing equations imply thiree waves
travel with specific directions. Boundary conditions are imposed for those waves
running into the computational domain, while for waves moving lrom inside the
domain toward the boundary, the decoupled characteristic equations surh as< those
given in Eq. (2.6) are used to allow the information to propagate from inside the

domain.

For subsonic inflows, A, and A; are positive, which implies two conditions inust

be specified at the upstream end. A reasonable choice is to specily the stagnation
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pressure P° and the stagnation temperature T°. Let these specified values of P"

and T be given as

PO = K]
TO = K:
If we define a vector 11 by
n=(P°,T°%0),

then, from Taylor series expansion of {1, we have

an
— On+! n _
an=nN -N" = _0 AQ

where A01/3Q is the Jacobian matrix of 1. To force 1"} to be fixed at the value

of N,, where 0, = (K, K3,0)7, the following equation can be employed

an . ,
598Q =" -0 (2.12)

Since the third eigenvaiue )3 is negative, we must select the decoupled char-
acteristic equation corresponding to A3 from Eq. (2.6) to complete the upstream

boundary conditions. If we define the selection matrix L~ by

L™ =

(2 o B o]
o OO
- O O

and multiply L=M~! on both sides of Eq. (2.10), we obtain the characteristic

equation corresponding to Aj as
-aq -1 d -pg=1
LM (I -AtD + AtEA)AQ = -AtL"M™R. (2.13)

Combining Eq. (2.12) and [£q. (2.13), the discretized equation at tlie inlet boundary

can be written as

(2.14)

n d o
— _ l—.A P - n _ l" i
56+ LM~ AD + AL ANAQ = 0, - 0" - ALLTM'R
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For supersonic flows at the inlet, all three characteristics come from outside
the domain; therefore all entries of the dependent variable Q have to he specified.
For supersonic flows at the exit, all three characteristics are outgoing; therefore, the
discretized equation itself, Eq. (2.10), can be applied directly without any special
treatment. For subsonic flows at the exit, A3 is negative, hence one boundary

condition has to be specified. Let the specified quantity be the back pressure P, =

K3. The vector 11 now takes the form

n=10,07,)7.

To select the characteristic equations corresponding to A, and A;, one can

choose the selection matrix L* as
1 0 O
L*=|0 1 0
0 0O

Similarly, the discretized equation for this case is

[% +Lt*M~YI-4atD+ At%—:-)]AQ =0, ~-N"-AtL*M~'R (2.15)
where the constant vector 2, = (0,0, K;,)T.

In the discretized equations at the boundaries, Eq. (2.14) and Eq. (2.15), the
centrally differenced spatial derivatives 3/dr are not applicable. To remedy this,
we use two-point one-sided differences instead of central-diflerences. This approach
retains the block tri-diagonal structure of the left hand side matrix but is only first
order accurate.

In order to have better solution accuracy, three-point one-sided differences can
be used. This results in extra elements at the first and the last row of the ieft
hand side matrix, which can be eliminated easily by elementary matrix operations
[38]. This approach retains second order spatial accuracy throughout the whole

computational domain, and will be generally used for the discretized equations at

the boundaries.




17

2.2.2 Stabilit nalysis

The ap;;lication of Fourier or von Neumann stability analysis [24| has become a
powerful tool for today’s CFD. In developing a new numerical algorithm, the stabil-
ity analysis provides abundant information about the convergence requirements of
various parameters involved in the algorithm. Before attempting to solve Eq. (2.2)
numerically, we consider the Fourier analysis of its discretized form, Eq. (2.10).

For any given function f(z,t), the Fourier transform is defined by
o0
fw,t) =/ f(z,t)e”'“%dz
- 00

where s is the square root of --1. This transform exists only if f(z,t) is square

summable, that is,
o0
/ [?(z,t)dz < oo.
- 00

The inverse transfcrmation which transforms f from the frequency domain to the

spatial main is defined by

[(z,t) = -: f(w.t)e'“";—:.

The analogous transform for a function ¢(z,t) defined only at discretized points can

be written as
o0

Glw,t) = Az Z q(t)eten

or

oo
§"(w) = Oz Z gle v

t= =00

where the superscripts n denote the time step (¢ = nAt) and the subscripts @

represent the spatial step (r, = 1Az). The inverse transformation for the discretized

function ¢ is given by

m/Az

= e (2.16)

-n/Oz 2
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Upon substitution of a specific Fourier mode with frequency w into the dis-

cretized equation, we obtain the functional relationship of the amplification factor
defined by

_ gr.-fl(w)
T W

The stability criteria for any specific aigorithm are then determined by the magni-

(2.17)

tude of g. If |g| is greater than unity, the amplitude corresponding to the wave mode
w is growing, and hence is unstable. If |g| is less than unity for all wave modes, the
algorithm is stable.

In solving the central-difference discretized equation numerically, second order
as well as fourth order artificial dissipation terms are added to Eq. (2.2) to avoid
odd-even decoupling and to damp out high frequency oscillations. This results in

2 90°Q €Az 3'Q

aQ 6
at+ z— 8% 550 = H - Sar 3o

where ¢, and ¢, are positive constants. The discretized equation, Eq. (2.10}, now

becomes

0 € . 0% N Q"
(- 8D+ Al 4~ 282 2 1)8Q = ~AtR - $az'(57) (2.18)

For linear stability analysis A can be treated as a constant matrix. In the

frequency domain Eq. (2.18) becomes
LiQ™*" = L,Q" (2.19)
where Ly and L, are given by

, At
L, =11+ %(l ~cosw,)| + :—A—;Asmw,1 - AtD

and

€
L =111+ —2'(1 - cosw,) - (—;(cosu, - 1)7'

I
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with w, representing the wave number defined by w, = wAz.
Analogous to the definition of the amplification factor for the scalar system,

we can define the amplification matrix G by
Qn+l = GQ"

The convergence criteria are then determined by the eigenvalues of the matrix G.
A stable algorithm is ensured when the magnitudes of eigenvalues of G are all less

than unity. From Eq. (2.19), G can be easily evaluated by G = L,"Lg. At the high

wave number limit (w; = ..}, the eigenvalues of G are found to be
91 = 1+ ¢
g 1 + C‘ - 2(¢
2 =
1+e +(y-1)282ge
_ 1+¢ — 2,
93 = 1+ ¢

where o is defined by

o= ult
T Az
which is referred to as the Courant-Friedriches-Lewy (CFL) number. According to

the absolute values of g, and g3, it is required that
0<e <1+eg (2.20)

to maintain numerical stability. The value of 3, depends on the CFL number, ¢,,
te, and Lhe geometry. The stability criteria associated with iL are rather involved.

However, several conclusions still can be drawn. First, in a divergent portion of the

geometry (g% > 0), Igz| is always less than unity, thus the Euler implicit scheme
is stable. Second, in a convergent section (3'3 < 0), there exists a certain range

of CFL such that |g;] > 1 for fixed ¢, and ¢,. Third, if no fourth order artificial

dissipation is included (¢, = 0}, |g2] is alwa ;= greater than unity in the divergent
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section, hence the algorithm is unstable. In practical situations, the geometry
contains hoth convergent and divergent sections; therefore, the central-difference
Euler implicit scheme for quasi one-dimensional flows is only ¢onditionally stable.

The eigenvalues of G can be calculated numerically for various wave numbers.
Figure 1 shows the plot of the magnitude of the maximum eigenvalue versus w,
for CFL = 1,10,100 at a flow Mach number of 0.5. This figure clearly illustrates
that increasing the CFL number tends to decrease the magnitude of the maximum
eigenvalue, which is beneficial for the speed of convergence. Effects of the artificial
dissipation are demons‘rated in Fig. 2, where the maximum eigenvalue of G is
plotted for ¢, = 0,0.25,0.5,1.0 for a fixed CFL of 10. 1t shows that the addition of
fourth order dissipation damps out high frequency components of the wave. It is
also observed that ¢, = 0.5 is optimal as far as convergence is concerned.

The Fogrier analysis discussed above is based on two major assumptions. First,
the analyeis is only valid for linear cases, in other words, the nonlinear effect. of the
Jacobian matrix A has been neglected. Second, the analysis assumes an infinite
domain and excludes the eflect of boundary conditions. Therefore, the results are
qualitatively rather than quantitatively accurate.

From the results of Fourier stability analysis, it is apparent that the CFL
number plays an important role on the speed of convergence. To obtain optimum
convergence, the CFL number should be as large as possible provided that numerical
stability is retained. Since the CFL number is directly related to the time step size,
we can calculate At according to the desired CFL number. If one is interested in
accurate solutions during a transient, At must be uniform throughout the flowfield.

In this case, At is better determined according to the maximum value of u, that is.

At = aAz.

Umaz

In general, the vclocity u varies from point to point, the using of a uniform time step
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will result in non-uniform CFL numbers throughout the flowfield. Consequently,
the overall convergence is deteriorated, especially when only steady state solutions
are of interest. In order to have optimum convergence, At can be locally determined

by the given CFL number, in other words, the time step size at each grid point is

calculated according to

oAz
et

At =

This implies a constant CFL number has been enforced over the whole flov/fie!d. The
introduction of this spatially varying time step (or so-called constant CFL) greatly
enhances the speed of convergence [39]. 1 this study, the constant CFL approach

will in general be used for all calculations since only steady state solutions are

concerned.

2.2.3 mputs‘ional Pesults

The one-dimensionai flow through a convergent-divergent nczzle with the area

variation givin by

Ain = Ath 2rz Aln + A
a(z) = - 5 cos(L)-f- ranl

is chosen as a test problem The geometry associated wiith definitions of z, A,.,
A¢n, and L are shown in Fig. 3. A uniform grid with total of 40 points and an area
ratio (A¢n/A,n) of 0.8 are used for all calculations that follow.

Three typical cases are investigated, including pure subsonic, transonic, and
pure supersonic flows. Figure 4 shows the convergence rates of these czses by
plotting the L-2 norm of the non-dimensional change in Q@ (AQ/Q) against the
number of iterations. Each curve is obtained by using the optimum CI'L rumber
(the CFL number that gives the fastest convergence). The supersonic case converges

the fastest among the three cases because of the predominantly hyperbolic nature

of the flowfield. For pure subsonic flows, the system of equations is elliptic in
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Figure 3. Nozzle geometry for 1-D calculations
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the spatial direction since both left-running and right-running characteristics are
present in the flowfield. The subsonic case shows Lhe slowest convergence duc to Lhis
elliptic behavior. The accuracy of the central-difference formulation is demonstrated
in Fig. 5 and Fig. 6, where the computed Mach number and pressure distributions
along the streamwise direction for the transonic calculation are compared to Lhose

from exact solutions for the same nozzle. The comparison shows that computational

results agree very well with exact solutions.
2.3 The Upwind-Differencing Algorithm

The main purpose of this study is to develop efficient numerical algorithms for
supersonic calculations. As indicated earlier, the predominantly hyperbolic nature
of supersonic flows distinguishes themselves from transonic and subsonic flows. To
take advantage of this character, upwind schemes appear to be attractive. As we
have seen in Section 2.1, the Jacobians of the governing equations generally contain
both positive and negative eigenvalues. The sign of each eigenvalue implies the
direction of wave propagation on the z — ¢t plane. The crux of flux-vector splitting
upwind algorithms 16,22} is to separate the flux vector E into parts with definite

(positive and negative) eigenvalues. The splitting can be formally indicated as
E=E*+C" (2.21)

where the eigenvalues of the Jacobian of E* are positive and those of L~ are
negative. There are an infinite number of ways to accomplish this splitting. As
an example, we have considered the Steger and Warming (16| splitting. From the

similarity transformation of A defined by Eq. (2.4), we readily have
A=M"TAM.
The Steger and Warming splitting takes the form

AT = (A +]A])/2

D
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A™ = (A -[A])/2

where |A| refers to the matrix composed of the absolute values of the elements of

A. The matrix A can then be decomposed into
A*Y = MA*M™
A" =MA"M!
with A == A* + A~. By using the homogeneous property of the matrix A, we have
E=(AT+A")Q=E*+E"~

in which, E* = A*Q and £~ = A™Q.

Again, using Euler implicit differencing in time, the flux split system can be

described by

Qn+l - Qn 8E™ 8E- n+!
4 (Gt 5 -H) =0 (2.22)

A linearization similar to Eq. {2.8) can be applied to E* and E~. The resulting

delta form is
, 3 .. J _ ,
[/ - AtD + At(E;A‘ + a—;A. )|AQ = - AtR (2.23)
where the residual vector R’ is
, 0Et O9FE- "
R = ( 32 +—5;-—H) . (2.24)

The Jacobian matrices A} and A; are defined by A = 3E*/3Q and A; =
8E~/3Q. Note that A # A* and A # A~ when the ecigenvalues of A are of
mixed sign. For the one-dimensional case, if the flow 1s supersonic (v > ¢}, A/ is
exactly the same as A given in Section 2.1 and A, is zero. As an approximation,
A* and A~ can be used instead of A} and A; in Eq. (2.23). The eflect of using

true o1t approximate Jacobian matrices is detrimental as will be discussed in the

next section.

T, T 3 e Ve, 11 gt R KA 3

T T ——




30

All spatial derivatives in Eq. (2.23) and Eq. (2.24) imply that they will be
differentiated according to the signs of their eigenvalues. For example, dE*/dz

and E~ /9z are differentiated according to

dEY El-E}, E} -2E! +E},

oz Az +x 24z

and
dE- E;,,-ET _'CE.'- -2E\E,,
9z Az 20z '

where x = 0 for the first-order scheme and x = 1 for the second-order scheme.
The left-hand side matrix in Eq. (2.23) is block tri-diagonal if all spatial deriva-
tives are discretized by first-order upwind differences. It is well known that first-
order upwind differencing adds a large amount of artificial dissipation to the nu-
merical algorithm, and is highly inaccurate. If second-order accurate differencing is
employed, the left-hand side matrix becomes block penta-diagonal, which is more
time-consuming to solve than the block tridiagonal matrix; however, if only steady-
state solutions are of interest, one can use first order differencing on the left-hand
side and second-order differencing on the right-hand side. This will retain the block
tri-diagonal structure of the left-hand side matrix while maintaining the second-
order accuracy of the steady state solution. Jespersen and Pulliam [40] have shown
that this non-consistent first and second order differencing will reduce the stability
bound of the CFL number and slow down the convergence. To make consistent

second-order differencing possible, one can approximately factorize the left-hand

side of Eq. (2.23) as,

(I - AtD + At‘%A;’)(l -AtD)" Y1 -atD + Ata%A,‘)AQ = -AtR' (2.25

Equation (2.25) is equivalent to

(I - AtD + Ala%A,*)AQ' = -~AtR' (2.26)
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and

(/- AtD + At-‘%A{)AQ = (I - AtD)AQ". (2.27)

Equation (2.26) can now be solved by space-marching from upstream to downstream

since the left hand side matrix is lower bi-diagonal for first-order spatial differenc-
ing and is lower tri-diagonal for second-order spatial diflerencing . This forward
marching together with the backward marching given in Eq. (2.27) will comnplete
one iteration.

Two comments can be made at this point. First, as indicated by Steger and
Warming {16], small oscillations occur by using this splitting when a sonic line is
crossed because of the discontinuity in the first derivative of the split lux when the
eigenvalues change sign. This oscillation can be partly removed by the introduction
of a blending coefficient in the calculation of eigenvalues [41]. Second, if the flow
is supersonic, E~ and A; are identically zero. Equation (2.23) reduces to a form

analogous to the forward-sweep step given in Eq. (2.26), namely
d ., 9E* "
(1 - AtD + Atb—;A, JAQ = - At 3 " H) . (2.28)

As in Eq. (2.26), the left hand side matrix of Eq. (2.28) is lower triangular and only

the forward marching step of Eq. (2.26) is necessary to complete one iteration. This

allows a pure marching solution to be obtained. In fact, we can rearrange Eq. (2.28)

to
K. At E¥ - E* EY -2E* +E* "
I~ At =)-— A} , = A= =1 ' -1 1-2
{ AD+(1+2)MA, |AQ At e + K e 1)
(2.29)
where x = 0 for frst-order scherne and x = 1 for second-order scheme. This

equation is a marching equation, which can be solved by iterating in time at ecach
grid point before advancing to the next streamwise location. Thus, the vector AQ,
on the left hand side of Eq. (2.29) can be driven to the desired tolerance by tirne-

marching at the i-th grid point before the procedure marches to the i+1-th point.
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This marching procedure will be extended for two-dimensional calculations in the

following chapters and will not be discussed in detail here.
2.3.1 Boundary Conditions

The boundary procedures for upwind schemes are similar to those for central-
difference schemes. At boundaries, the characteristics coming from outside the
domain are not defined and are replaced by specified boundary conditions. By

neglecting these incoming characteristics, the discretized equations reduce to

(I-AtD + mb‘?-A )AQ = -At(a—”: - H) (2.30)

at the upstream inlet, and

+ n
9ET _ p (2.31)

(I - AtD + AI%A'*)AQ -At(

at the downstream end. In these two equations, A* and A~ have been chosen
instead of A} and A; to enable the application of the MOC procedure. By us-

ing the identity matrix / = MM ™! and the definition of A*, Eq. (2.30) can be
approximated by

M(I - AtD + At-éa-A IM“AQ = —-At(a—E: - H)
Multiplying both sides by M ~!, we have
-+ 27000 = s )’

which is equivalent to the previously defined decoupled characteristic cquation.
Again, multiplying this characteristic equation by a selection matrix L* and comn-

bining it with the specified boundary conditions discussed in Section 2.2.1 gives

an o o0E~ "
[ — *AMY]T - —A =N -0N" - Mo (= -~
'20 + LM~ (I - AtD + AtaIA )jaQ =0, -n ALL™M ( H)

(2.32)
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where the vectors 1 and 1, follow the same definitions given in Section 2.2.1. This
boundary procedure is similar to Eq. (2.15) except different decoupled discretized
equations have been used in Eq. (2.32). The discussion above illustrates that the
boundary procedures formulated for the central-differencing algorithm given in Sec-

tion 2.2.1 are also applicable to the upwind-differencing scheme.

2.3.2 Stability Analysis

The stability analysis is now studied for the upwind algorithm. For demonstra-
tion, only first-order differencing on both sides of Eq. (2.23) is considered. Following

the definitions given in Section 2.2.2, the amplification matrix G can be expressed

by G = L7'L; with

At .. At . -
Ly=I-AtD+ K;(l — coswy + i 8inw) At + K;(cosw, + {sinw; — 1) A,

Ly =1

where true Jacobian matrices A; and A; have been used. Alternatively, if the ap-

proximate Jacobian matrices A* and A~ are used on the left hand side of Eq. (2.23),

L, and L; become

At - -
+ Z—;(cosw, +isinw, — 1)A
At - . e
L3=I+E(l—cosw,+nmw,)(A - A7)

At - - -
+ E(cosu, +isinw, ~ 1)(A™ - A]).

As noted earlier, A and A differ from At and A~ when the flow is subsonic.
Typical stability results for the approximate Jacobian case are shown in Fig. 7 for
a flow Mach number of 0.5. An explicit-like CFL restriction (0 < 1) is observed.

On the other hand, if true Jacobians are used on the left hand side of Eq. (2.23),

the upwind algorithm is unconditionally stable, as shown in Fig. 8. For supersonic
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Figure 7.  Stability results of 1-D implicit first-order upwind scheme,
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true Jacobian, M = 0.5

O
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Figure 9.  Stability results of 1-D implicit first-order upwind scheme,
supersonic flow, M = 2.0
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flows, A7 = A and A[ is identically zero. Corresponding stability results are shown
in Fig. 9 for a flow Mach number of 2.0. The upwind scheme is again stable for
~all CFL numbers. As can be seen in Fig. 8 and Fig. 9, for a given CFL number,
the imax.mum eigenvalue of G reaches its minimum value at the high wave number
limit (w; = ). This characteristic implies that the upwind scheme is naturally

dissipative and no artificial viscosity is necessary to maintain numerical stability.
2.3.3 Computational Results

The same test problem given in Sectiou 2.2.3 is calculated by using Eq. (2.23).
Again, three typical cases are studied, they are pure subsonic, transonic, and pure
supersonic flows, Figure 10 compares convergence rates obtained by using first-
order differencing oa both sides of Eq. (2.23) for all cases. It shows that the upwind
algorithm is equally efficient as the central-diffcrence algorithm (compare Fig. 4),
exce.t for the transonic case, for which the discontinuity across the sonic point
substantially slows down the conveigence. The very slow convergencie of the sub-
sonic case based on the approximate Jacobians where the optimumn CFL number is
found to be 0.9 is also shown on Fig. 10. Tn fact, with the use of the approximate
Jacobian, the computer code diverges for both transonic and subsenic calculations
if 0 > 1, thus confirming the stability predictions given in the last section.

Computational results for the supe.sonic calculation are compared to exact
solutions in Fig. 11 and Fig. 12 for both first order and second order accurate coin-
putations. The second-ordar scheme gives solutions that are much more accurate

than the first-order scheme doe~. Therefore, second-order differencing should always

be used to ensure accurate solutions.
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CHAPTER 3

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO
THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS

Based on the information gained from the application of time-marching schemes
to the one-dimensional Euler equations, this chapter proceeds with numerical so-
lutions of the axisymmetric two-dimensional Navier-Stokes (N-S) equations. The
conventional implicit ADI procedure is first applied to transonic and supersonic
viscous calculations. The appropriateness of this procedure when applied to pre-
dominantly supersonic flows will be identified. According to the physics of viscous
supersonic flows, a discretized scheme using upwind flux-vector splitting in the
streamwise direction and central-differencing in the cross-stream direction together
with solution procedures are proposed. The Fourier stability analysis will be used
to analyze the stability criteria of this new discretized scheme. Of the solution
procedures, approximate algorithms as well as a direct solver are considered. These
procedures will be used to calculate viscous supersonic flows through nozzles. In
particular, attention will be paid to proper downstream boundary conditions for

the subsonic portion of the outflow and global mass conservation.
3.1 Governing Equations

For practical applications, the two-dimensional Navier-Stokes equations are

formulated in a cylindrical coordinate system. The equations for planar two-

dimensional flows can be easily obtained by simplifying the cylindrical version.
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Let z and y denote the axial and radial coe “he unsteady axisyminelt-
ric Navier-Stokes equations for laminar cor . tre given as
2 Q e .
3; (V) + 57 (ouy) + 3y (rvp} =0

9u _2
oz 3“

2 gt ot gyl 2 (ouvy) = 2 I
g Puv) + 52 [(ov” +p)yl+ oo (puvy) = = ((2m V-Vl gole(G; + g,

a 2 0 . 2 = v 4, dv OJu
g(pvv) + 5;(Puvv) + a—yl(nv +plyl=p+ §uV-V - 2#; + a:[“( + =)yl

dr Jdy
o v 2 -
+ 3;[#(25; -3V
(3.1)
Jd a d Fe ou 2 - dv
5;(¢y) + 5;[(¢ + pluy| + 5-;|(¢ +p)vy| = a(l#“(zg; -3V V) +w(z;
v 2 aT

I

ou oT d a du dv -
—)+k— — —+ — —_—-=V.V —!
+ G+ kgl + ollun(zy + 5) + welags - 59 V) + A G)
Again, standard fluid dynamic notations are used, including the axial velocity u,
the radial velocity v, the temperature T, the pressure p, the thermal conductivity

k, the molecular viscosity u, and the total velocity vector V. The divergence in

cylindrical coordinate is defined by

The total energy ¢ in two dimensions is
1
e=pe+ Ep(uz + v?).

To close the problem, the perfect gas relation p = pR,T is also required.

When written in vector notation, Eq. (3.1) becomes

0Q 9E 9F _ . OE, 8F

42 = 2
o tart ey ar T oy (3:2)

in which dependent variables are included in the vector Q defined by

Q = y(p, pu,pv,e)7, (3.3)
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convection terms are expressed by the inviscid flux vectors E and F defined by,

pu pu
3
_ pu’ +p _ puv
E= y puv ' F= y pvl +p (3'4)
(e + p)u (e + p)v

and the vectors £, and F, contain the second order viscous diffusion terms,

'

0
40y _ 2
E,=y “E‘a(gg + %_f)‘:) (3.5)
Luv(§ + §2) + uu($52 - 182) + k4T

.~

0 ]
Ro=y A8 - T o
Luu(§E + 38) + uu($5% - 19%) + k4T

The source vector [ includes all source terms associated with axisymmetric geom-

etry and all remaining viscous terms,

0

-4 (uv)
p—3uy+ ubt - Togh | (37)
=3 (wuv) - 3£ (w?)

In this form, the corresponding equations in planar two dimensions can be easily

H =

obtained by dropping H and setting the y's in Eq. (3.3) through Eq. (3.6) to unity.
To facilitate numerical computation over arbitrary geometries, Eq. (3.2) is

transformed to a general coordinate system by a transformation defined by
§= E(In y)

n=nlz,y)

where, £ and n are usually aligned with the streamwise and the cross-stream direc-

tion, respectively.
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The transformed equation takes the form,

aQ’ aE‘ ai‘ oyl aE.v al:'u
— h — 3.8
a Tt THY e t oy (3.8)

in which the strong conservative form is achieved by placing all the metric terms
(€es€y.etc.) inside the derivatives and cancelling the arising terms by the metric

identity. The new dependent variable Q is

~ T
Q = =(p,pu,pv,e)

e

where, J is the Jacobian of the coordinate transformation, which is defined by,

J = f:'ly = fy'l:-

Inviscid flux vectors in the general coordinate system become

oU pV
E= Vel +&ep Fa Y |puV +nep |
J|pvU+&p |’ J | vV +nup |
(e +p)U (e+p)V :

in which, U and V represent contravariant velocities in the general coordinate sys-

tem,

U=¢Eu+ v
V =n.u+nu.
Viscous flux vectors can be expressed as

ro_ szu+EyFu
E, = 7

S U:Ev+’7ypu
F, = 7

while the source vector is simply f = H/J.

For typical high Reynolds number flows, a highly stretched grid is required in

the normal direction near the wall in order to resoive the large norma! gradient inside
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the boundary layer. As a consequence, the grid size in the streamwise direction
generally chnnot be refined enough to resolve corresponding streamwise gradients
due to the limitation on computer storage even if streamwise diffusion terms are
retained in the complete Navier-Stoxes equations. Therefore, for high and even
fairly low Reynolds number flows, streamwise diffusion terms can manytimes be
neglected without losing accuracy. The resulting equation set is referred to as the

thin-layer Navier-Stokes (TLNS) equations [11],
8Q 9E oF - dF,
a T ta e (29)

The TLNS equations will be used as the governing equations for viscous calculations

in this study.

After the thin-layer approximation, the viscous flux vector f‘u and the source

vector H become

and

where,

Q
w
u

4 .
u(n? + 5')3)
~k
Cp

and C, is the constant pressure specific heat. “he viscous term dF,/dn can be

ac= —(n+ nz)

further rearrangcd 2

OF, 9 ., 9Q1 ., 9Q;
= — (R, . + R, pe (3.10)

an on
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in which, Ry and R; are 4 x 4 matrices defined by

' 0O 0 0 O |’ 0 0 0 0
_ {0 a az O 10 0 0 0
Ry = 0 a; a; O’ Ra=1|, 0 0 0
0 0 0 0 lay a5s aza o
The vectors ég and Q.; are defined by,
A T = 2,2 T
Ql = (pluvvve) ' Q? = (e/p.u 'V ,uu) .

In this form, the viscous dissipation in the energy equation is separated from the
remaining viscous terms so that formulations for which viscous dissipation can be
neglected are easily obtained by setting R; to zero. A further advantage of this
splitting is that matrices R, and R3 coucain only metric terms and properties of
the gas (viscosity, thermal conductivity and specific heats). For cases where, u,k
and C, are constants or nearly so, this division makes the linearization of the viscous
terms particularly easy. For turbulent flows when these quantities vary rapidly, this
form separates them from the dependent variables, making it possible to identify
their eflects on convergence more clearly.

With the substitution of Eq. (3.10) into Eq. (3.9), we ceadily have

aQ.Q\

+——+—-=f{+a an 2 )
on

o Y e T am o P, ©

(3.11)

This form will be used for discussion in the remaining part of this chapter. Note
that the Euler equations for axisymmetric. two-dimensional inviscid flows can be

obtained by dropping all the viscous diffusion terms in Eq. (3.11), this resulis in

where, the vector H, represents the inviscid source vector,

A =

<l
oW O
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The TLNS approach described above differs from the classical boundary layer

theory, in which both streamwise diffusion and normal pressure gradient are ne-

glected as a result of the order of magnitude analysis. Three major advantages of

the TLNS approach over the classical boundary layer theory are:

1.

3.2

Flows containing large normal gradients, such as thick boundary layer or small
reverse flow regions can be readily computed by using the TLNS equations,

since the pressure gradient is retained inside the boundary layer.

. The pressure inside tne boundary layer couples with the pressure variation in

the inviscid core region in the TLNS approach, hence the pressure distribution
along the cross-stream direction can be 801 ed in a coupled fashion without
need for the inviscid-viscous patching, which is traditionally used in the classical

approach for the numerical solution of high Reynolds number nozzle flows [4,5!.

For internal flows, the TLNS equations automatically conserve mass, while the
inviscid-viscous calculation based on the boundary-layer approach generally ig-
nores the mass inside the boundary layer. Although, the eflect of this mass
deficit on the inviscid flow is compensated by offsetting the wall contour ac-
cording to the displacement thickness, the patching procedure does not contain

proper mass flow rate. This is especially critical for flows with thick boundary

layers,

he it 1 Scheme

As indicated in Chapter 1, the well-developed alternating direction implicit

(AD1) scheme has been extensively used to solve compressible gas dynamics prob-

lems. In this section, this technique is formulated for the axisymmetric two-

dimensional TLNS equations.
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The Euler implicit algorithm for Eq. (3.11) can be formally expressed as

- - - - - - +1

grt' Q0 AE oF - a . _ a0, 30,."

jo. SN — —_— —_——— = 0. 3.13
AL + 3¢ + an H an(R‘ 3 + Ra an ) 0 (3.13)

A local truncated Taylor series expansion can be used to linearize all the flux vectors

and the source term. For example, £ is linearized by using
Er! = E™ + AAQ (3.14)

where AQ = Q™! — Q™ and A is the Jacobian matrix 3E/3Q given by

0 €z §y 0
A= £:9 - ulU U= (v-2):u §yu —~ (v —=1)€:v (v-1)&
T &®-vU §zv— (v —1)§u U=(y-2)&v (v=1)&

U2 - 13) £(1E-8) = (y= DU &(vE-8) = (y- DU U
in which, ¢ is defined by & = 1~ (u? + v?).

Similarly, vectors F and H can be linearized as

Fr*l = F7 L BAQ (3.15)

A™*' = " + DAQ (3.16)
where B and D are Jacobian matrices 3F/9Q and dH /3Q. The matrix B can be

obtained by replacing U with V and € with n in the A matrix given above. The

Jacobian matrix D is

0 0 0 0
poldn 0 dn 0
d3; daz diz dag

dgy dq2 daa O
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where,
dy = ;f%(‘% ;)
wedeis L et
daz = —(v - 1)5‘ - %ﬁ;
da¢ = gl
y
dar = %"7’:—0(-% - %) + 45’3—”:—"(‘—'—:2 - %)
dy2 = —gjfaa—n(ﬁ;’ : i‘)
oS -t
The viscous terms can be linearized according to
(Rlan aaan) (Rlaain RzaaQ;:) +(Rl‘c% u1+Rz 0 B,2)AQ

(3.17)

where, only @, and Q, are linearized. The viscous Jacobian matrices are defined

by B,y = 0Q1/8Q and B,; = 8Q2/3Q, they are found to be

1 0 0 O
J|-¢ 1 00
By, = = ﬁ ° 1
v -5 0 ? 0
9 0 0 1
and . 1
-5 0 o0 4
u?
B, = Jo -2 3 2t 0 0
V|-2%2 0 2¢ 0
by .
L P r [
Substituting Eq. (3.14) through Eq. (3.17) into Eq. (3.13), we l.ave
{1 AtD+At[ A -—-B —a—(R ia—B + R 9 B.,,)}AaQ = -AtR (3.18)
T 3 EFASEwe] 25, 0v2)! = :

e T R A - A AT - YR ET . B LT~ AR P ST - = T

- e T A T T
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where, the residual vector R is,
' 3 - a
R = %—? —Ii -H - —-(R;an Rg—gl)l (3.19)

All spatial derivatives in Eq. (3.18) imply that central-differencing will be used for
the discretization.

The solution of the Euler implicit scheme, Eq. (3.18), requires the solution of
a high band-width block matrix for each iteration, unlike the one-dimensional case,
where the matrix is only block tri-diagonal. The computer storage and the CPU
time required in solving this high band-width matrix are very large for typical two-
dimensional problems. Hence, 2 procedure like Eq. (3.18) is impractical. The ADI
or Approximate Factorization (AF) algorithm arises under this situation. The basic

idea of a ADI scheme is to split the left hand side operator of Eg. (3.18) into two

parts as,

(I- AtD + AtaﬁgA)(J - atD)™!

3 3 _ a 3 (3.20)

[1 -AtD + Até—B A!a (Rl 6r)B°' + Rj é-r;Bug)]AQ = -AtR

The first operator on the left hand side of Eq. (3.20) contains only £ derivatives, and

the last one contains only n derivatives. The solution of Eq. (3.20) can be broken

into two steps. For the £ direction sweep, the equation

(I - AtD + At%A) AQ" = ~ALR

is solved. Alter obtaining AQ" at each grid point, the n direction sweep equation,

0 o 3 - .
I - AtD t—B - At— v —B, = (] - Ot ‘
[ + A 3 A 6n(R' 3nB '+ RzanB 2)]AQ = (I -~ OLD)AQ

i solved for Aé over the entire domain. The dependent variable is then updated

according to

Q'n+l Q

Q.
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Each sweep now requires only the solution of a block tri-diagonal matrix. This

approach saves CPU time and computer storage.

3.2.1 Boundary Conditions for the ADI Scheme

The boundary procedures discussed in Section 2.2.1 can be easily extended
to the present two dimensional czlculation. First we notice that the similarity
transformations

A=MAM[!, B = MaA, M}

which convert Jacobian matrices into diagonal matrices A, and A, exist for both
Jacobian matrices A and B. The left and right eigenmatrices for the Jacobian

matrix A are

Lo I
M u pk: 5;(%4‘/63) ﬁ(%-’q)
¢~ v —pky f;(% + k3) :5-;(%-1:3)
% p(ukg - vkl) v+ '\7-2-0 ¥ - 'ﬁ;a
and
L5 G-0%  (-ny %
-k;uik.v h -.EL 0
m! ¢ g ® k f(1=)u k 0 1
|- — A LY :I/._"
¢ 7;; + 20¢ 2p + 2pc vip + Ipc 2¢
] 3 __k l1-v)u __k =7y -1
75; * -\72p¢ 7;; + 2pc 2 + V2pc 32;:
where, k; = Véw and kg = - ek The quantities ¥ and @ are,
_ pd + pe
V2(v=1)c - V2(v- 1)
and

0 =kiu+ kav.

The eigenmatrices M, and M ' can be obtained by the substitution of £ with 7

in M¢ and Me". respectively. The transformed matrices ¢ and A, are diagonal

matrices givern by

Ae =diag(U,U,U + C¢, U ~ C¢), A, = diag(V,V.V + C, V - p)
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in whick, C¢ = (/€2 + €3¢ and C = /n2 + n3c. The non-vanishing elements of

A¢ and A,,'are the eigenvalues of A and B, respectively.

For demonstration purposes, the boundary procedures for the flow through a

nozzle are discussed. Extension to other types of flows is straightforward.

As indicated earlier, streamwise diffusion is negligible for a high Reynolds num-
ber flow. Hence, inviscid MOC boundary conditions are applicable at the inlet and
the exit plane. If the inflow is supersonic, all eigenvalues are positive, thus four
boundary conditions have to be specified in order to determine four unknowns at
the inlet. In other words, the dependent variables must be completely specified. If
the inflow is subsonic, only the fourth eigenvalue is negative since U < C¢. This
implies three specified boundary conditions together with one decoupled character-
istic equation must be imposed at the inlet. One reasonable choice is to the specify
stagnation pressure P°, the stagnation temperature T°, and the flow angle v/u.
If the selection matrix L~ is chosen as L~ = diag(0,0,0,1) and the vector 1 is
defined as 01 == (P°,T° v/u,0), a boundary procedure similar to Eq. (2.14) can be

obtained by multiplying Eq. (3.20) by L~ M, and combining the resulting equation
with 9N/8Q.

No special treatment is needed at the exit il the outflow is supersonic. [or
subsonic outflow, the back pressure is usually specified. Thus, a procedure similar

to Eq. (2.15) can be applied at the exit.

At the centerline of the nozzle, the dependent variable Q vanishes, since y is

identically zero. Therefore Af) is always zero at the centerline. Flow variables can




be calculated after each iteration, by symmetrical conditions,

At the wall, the MOC type procedure can be obtained for inviscid flows by
specifying V = O to reflect the tangency condition and selecting the decoupled char-
acteristic equations corresponding to outgoing characteristics. For viscous flows, the

MOC procedure is not valid, the no-slip conditions,

(3.21)

together with zero normal pressure gradient and the specified wall temperature,

» _,
on (3.22)
T=Ty

can be used instead. Here, T,, is the specified wall temperature and n denotes the
direction normal to the wall. The last equation can be replaced by adiabatic wall
or specified heat flux conditions with x8T/dn = ¢"(§).

There are two different methods to apply these no-slip conditions at the wall.
First, AQ can be set equal to zero at the waii [13] when solving the discretized
equation, Eq. (3.20). Then flow variables are calculated according to Eqs. (3.21)
and (3.22) by using the updated Q from interior nodes. In this way, solutiors at the
wall lag those of the interior nodes by one iteration step, thus we can refer to this

method as an explicit-type boundary procedure. Alternatively, the unknowns at the

wall can be coupled to the unknowns at *he interior points [14] by relating AQ at
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wall to those at interior nodes according to the no-slip conditions. In this approach,
the flow variables are forced to obey Egs. (3.21) and (3.22) at the new time level.
This approach solves the unknowns at wall and interior nodes simultaneously, and is
referred to as an implicit-type boundary procedure. In the following, both boundary
procedures are implemented at wall boundaries and their effects are identified.

3.2.2 Stabllity Analysis of the ADI Scheme

The stability behavior of the implicit ADI scheme has so far not been iden-

tified. By applying the double Fourier transform({24| to the fully implicit scheme,
Eq. (3.18), we have

LiQ™! = L,Q"
so that the amplification matrix G is
G = L,'le
where, Ly = ] + Cr; and L, = I with Cgj given by

LAt LAt At
Cr1=-AtD + 13_53"1(#6‘4 + nZ;smw.,B+ 2-A—n-2-(l —coswy)(/%y By + Ry B.2).

For the implicit ADI scheme, L; and L; are Ly = I + Cp; + Capy and L, =

I+ Capy, with

Ar?
C = - 1 H - -1
ADI INTY" sinwgsinwnA(J — AtD)"'B
At »
+ 2A£Ar72 sinwg(cosw, - 1)A(] - &tD)" (R, B.; -~ R2By3).

The matrix C4op; is the contribution due to the approximate factorization. In
these expressions, w: and w, represent the wave numbers in £ and n directions,
respectively.

As stated earlier, the numerical stebility is controlled by the magnitude of the

maximum eigenvalue of the matrix G. The variation of the maximum eigenvaluye
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as w¢ and w, change from O to 7 constitutes a three-dimensional surface. To make
the results'more readable, only the variation along the diagonal line (w¢ = w,) on
the spectral plane is calculated. Figures 13 and 14 compare the results of the algo-
rithm described above with and without approxiinate factorization. The low Mach
number is 0.5 and the Reynolds number is 10* for both cases. The time step size
At is determined by the CFL number based on U + C;. The maximum eigenvalue
is shown to be always less than unity for the fully implicit scheme, and hence is
unconditionally stable for the two-dimensional TLNS equations. As the CFL num-
ber increases, the maximum eigenvalue at moderate wave numbers (around 7/2)
decreases. This implies that the convergence rate will be speeded up by increasing
the CFL value.

For the AD] scheme, the approximate factorization alters the shape of stabil-
ity curves substantially, especially when CFL is large. In general, the maximum
eigenvalue at the mid-wavenumber condition is much higher than that of the fully
implicit scheme and approaches unity as the wavenumber increase. The results on
the figure suggest that the ADI algorithm has an optimum convergence rate at a
finite value of CFL.

Effects of the flow Mach number are indicated in Fig. 15, where consecutive
cases are calculated for several Mach numbers with a CFL number of 10 for the ADI
scheme. The eigenvalues approach unity for a very low Mach number (10~2), thus
slow convergence can be expected. As the Mach number increases, the eigenvalies
near low and high wave numbers decrease, thus better convergence is implied. Al-
though not shown here, effects of the flow Reynolds number on stability curves a-e

less prominent as compared to those of the flow Mach number and the CFL number

for the present local stability analysis.
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Figure 13. Stability results of 2-D fully implicit scheme without
approximate factorization
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Figure 14. Stability results of 2-D implicit AD! scherie with
approximate factorization
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3.2.3 Results and Discussion

The flow through an axisymmetric converging-diverging nozzle with the wall

shape defined by the radius variation,
r(z) = =2(4R - 1)z + 3ARz* + 1

is calculated for illustration. Here AR is the ratio of the throat radius to the
inlet radius. The geometry of the nozzle and a representative grid are shown in
Fig. 16. Computational results are shown in Figs. 17-19. Two typical cases are
calculated, including a pure subsonic flow, and a transonic low through the c-d
nozzle with AR = 0.8. The grid is 50 x 30 with 30 in the cross-stream direction for
inviscid calculations and is 50 x 50 with a strong clustering near the wall for viscous
calculations. The viscous grid is shown in Fig. 16.

The computational results have indicated that the resulting Mach numbers
at the entrance are around 0.2 and 0.4 for the subsonic and the transonic cases,
respectively. Figure 17 shows the L-2 norm of the change in the dependent variable,
Aé/é, versus the number of iterations for the inviscid calculations by using the
inviscid grid. Corresponding results for the viscous calculations based on the viscous
grid are shown in Fig. 18. Both inviscid and viscous results show that the transonic
case converges faster than the pure subsonic case. This is due to the low Mach
number effects of the subsonic case.

The comparison of Iig. 17 and Fig. 18 indicates that ‘nviscid calculations con-
verge faster than curresponding viscous calculations. Ther¢ are two possible reasons
for this; one is the viscous diffusion inside the boundary layer, the other is the grid
stretching near the wall. To understand which was controlling, the inviscid calcula-

tions are done on the viscous grid for both subsonic and :ransonic cases. The results

are also shown on Fig. 18. As is seen, inviscid calculations based on the viscous
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Figure 16. Nozzle geometry for 2.D transonic calculations
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Figure 19. Mach number crntours of transonic solutions tor ADi scheme
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grid give almost the same convergence rates as viscous calculations. Therefore, we

can conclude that the grid stretching deteriorates the convergence.

The optimum CFL number for all calculations is around 5, which is rypical
for a factorization scheme At a CFL number as low as the order of 10, further
numerical experiments with the ADI scheme show that the explicit or the implicit
wall boundary procedure has no effect on the convergence. Computed flowfield

reaults are shown in Fig. 19 where Mach number contours for the viscous transonic

case are plotted.

The ADI algorithm has also been applied to a pure supersonic calculation. To
avoid the presence of shock waves, a 15 degree conical nozzle with an expansion
ratio (the exii area to the inlet area) of 30 and an inlet Mach number of 1.02
is calculated. Figure 20 shows convergence curves for both viscous and inviscid
results. Comparisons with Fig. 17 and Fig. 18 show that the inviscid supersonic case
converges faster than the inviscid transonic calculation, while the viscous supersonic
case is as slow as the viscous subsonic case. Although these prelitninary supersonic
calculations show fairly good results, further numerical experiments on a higher
expansion ratio nozzle (100:1) have indicated that the analysis code based on the
central-differenced ADI scheme is difficult to start with an arbitrary assigned initial
guess. Usually a very low CFL number (around 1) has to be used at the initial
stage. Also, the convergence rate deteriorates as the area ratio increases. Additional
experiments of transonic flows through the convergent-divergent nozzle deseribed
above show that as the size of the divergent section increases by a certain amount,
the central-differenced code becomes unstable and diverges and the upwind-central

differencing method described later is recommended.

The computational results above illustrate that the implicit ADI procedure is

efficient for flows at transonic speeds. For flows which are predominantly super-
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sonic, such as those flows through high expansion ratio nozzles, the implicit ADI
procedure is inefficient and sometimes even unstable. By contrast, our stability re-
sults have indicated that high Mach rumber flows should converge faster than low
Mach number flows. The reason for this contradiction is as follows. Although high
Mach number flows have stronger damping effects than lower Mach number flows,
once the flow becomes supersonic, the equation set is hyperbolic in the streamwise
direction since all eigenvalues of the Jacobian matrix A are positive. This hyper-
bolicity implies only upstream events can aflect downstream events, however, the
central-difference formulation in the ADI scheme allows upstream propagation. In
the earlier stages of a computation, this upstream influence keeps on propagating
wrong information (from the unconverged solution) from downstream back to up-

stre.m, and consequently slows down the convergence. This also explains why the

coda is difficult to start for supersonic cases.
3.3 Stability Congideration_of win orit

As we have seen in the previous section, the imp'icit ADI algorithm becoines
ineffi. ient whep the flow is predominantly supersonic due to the fact *hat the central-
diflerence formnlation allows the downstream isifluence of the unconverged <olutior,
L0 propagate upstream. To avoid this unwanted upstream propagation, upwind
schemes appear to be desirable. The basic idea of a upwind difference 1z 1o model
the physics correctly by using a difference stencil which invelves only windward
information, hence “wrong” propagation is prohibited. The upwind-difTerence lor-
mulation is cl.osen to develop suitable numerical algorithms for supersonic calcula-
tions. Based on the cuccessful application in one-dinersional flows, che flux-vector
spuiiing algorithm [16] will again be utiiized to develop up'vind algorithms. Ise-
fore tormulating the detail of the numerical procedures, the stability analysis of a

modeled scalar equation is considered for several possible solution procedures.
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To simulate present two-dimensional viscous flows, the Burger's equation,

du +0u Ju du %u

= patmra = b =

—_ 3.2
at dz oz ay  Hoy? (3.23)

is chosen as the modeled equation, in which e* and a~ are positive and negative
constants, respectively. The second and the third terms on the left hand side are
used to simulate the flux-splitting in the streamwise direction, where the flow is
predominantly supersonic. Again, these terms must be differenced according to the
windward directions. Although second order upwind differencing will be used to
formulate the numerical procedures for Navier-Stokes calculations; for the modeled
equation, only first order accurate differencing is considered. The last term on the
left hand side implies that central-differencing will be retained since no preferable
windward direction exists on the cross plane. The second order term on the right

hand side is used to model the thin-layer viscous diffusion.

3.3.1 The Fully Implicit Scheme
Direct application of the Euler implicit scheme to Eq. (3.23) results in

2
ll+At(a+-c%+a'i+ba 9

— - p—)]|Au = — At 3.2
dr dy ﬂ8y7)l v Atr (3.24)

where, r is the residual given by

r = (ot du _0u ,0u A"

The amplification factor gr; for Eq. (3.24) can be easily found to be

1

SR E T
1+ Cpy

where, Cp; i8

Cri=o07(l--cosw,+18inw;)+0; (Cosw; +18sinw, - 1)+1o,8inw, +2u(l -cosw,).




68

The parametars, o} 0 ,and 0, are CFL numbers defined by

ot = atAt o- = 3Ot bAt

Az’ +t =2 VT Ay

The parameter v is the von Neumann uumber defined by

As stated earlier, the direct solution of a fully implicit scheme is impractical
in multi-dimensions, hence approximate factorization is necessary. A number of
approximate procedures can be identified for solving the left hand side operator in

Eq. {3.24). Of them, three factorization procedures will be discussed.

3.3.2 The Standard AD] Scheme

The first approximate procedure is to split the operator in Eq. (3.24) as
0 8 a 9?
+ — - —— — —— — ——— = e . .
1+ At{a 3. T¢ ax)][l + At(bay Uoos )|Au Atr (3.25)

Equation (3.25) is analogous to the implicit ADI procedure, except upwinding has
been used in the streamwise direction. This splitting generates error terms on the
left hand side of order At?. The resulting amplification factor g4py for Eq. (3.25)
is

l+CADI
1+Cp[+CAD]

9apI =
where,
Capr =i070y(1 - cosw, + 18inw,)sinw, + 10, 0, (c38w; + r3inw, — 1) sinw,
+20fu(1 - cosw, + isinw,)(1 - cosw,)

+20;v(cosw, +1sinw, - 1)(1 - cosw,)

is the summation of factorization error terms.
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3.3.3 The Diagonally Dominant ADI Scheme

The second splitting under consideration is the diagonally dominant alternating
direction implicit (DDADI) method suggested by Lombard {14]. This splitting,

when first order upwind differencing is used, can be expressed as

Ata* 0 0
‘d-— Az u(-1,,+At(ba—y—u

At -
ayz)

'+A¢(b-a—— i)lAu = -Atr

|[d=td+

(3.26)
where d is the summation of diagonal elements given by d = 1 + ﬁi(a“’ -a”).
Equation (3.26) can be solved directly by using alternating forward and backward
sweeps. Alternatively, it can also be solved by using the line Gauss-Seidel relaxation
by MacCormack [15] and Chakravarthy [17]. This method has also been referred
to as the single-level scheme by Lombard [19], and the LU scheme by Yoon and

Jameson (18].

The line relaxation method for the DDADI splitting is discussed as follows.

First, Eq. (3.26) can be split into,

3? ¢
(d + At(b—- ~H3 )lAu = —-Atr + —E;a du,_,y, (3.27)
and
a? . At _ .
ld + At(b—y ~H33 )lAu ddu;, - AL Ausy, (3.28)

Equation (3.27) can be rearranged as

0 3? . +“:‘,, "u..-gl, du Au Aty e
T TR AR TR L
(3.29)

fquation (3.29) is lower bi-diagonal and can be solved by marching from the up-

stream toward the downstream at each cross-strearn station after obtaining u;_,

from the iteration at previous stations. Similar to this forward marchi~g proce-

dure, we can define a symmetrica’ *ackward marching procedure by substituting
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Au® from Eq. (3.27) into Eq. (3.28) and neglecting unnecessary terms in order to

make the resulting right hand side residual to be consistent with the steady state

equation, r = 0, as Au is driven to zero. The resuilting backward marching equation

can be written as,

ﬂ‘fl .
- du ,du A%
~z - = - -;“'id___ + — - },
d + At(b ua 2)]Au Atla '~z + (a 32t bay “ay’ ) !

Equation (3.30) now can be solved by marching from the downstream toward the
upst;eain using the updated value of u:‘:l' jat the 1 + 1 station. The combination of
Eq. (3.79) and Eq. (3.30) completes one iteration step of the line-relaxation method
for the DDADI splitting.

The amplification factor g° for the intermediate forward marching, Eq. (3.29),

18

. u 1 - o7 {cosw,; + 1sinw,)

o1+ 07 (1 —cosw,; +isinw;) — 07 +10y8inwy + 2v(1 - cosw,)

and the amplification factor ¢°* for Eq. (3.30) is

.. utt! 1+o0}(cosw, — 18inw,)

9" = = -

u* 1+07 +0;7(cosw, +isinwy — 1) + 10, sinwy + 2v(1 - cosw,}

The overall amplification factor is then
gopaDr =9°9"". (3.31)

3.3.4 The Parabolized ADI Scheme

The third algorithm considered is the splitting,

a d 3? a
1+ At(a* ar + bé; -[.l 2)](1 + Ata—Ez)Au = --Atr. (3.32)

As we shall see in the next section, the first operator on the LHS is similar to a

parabolized Navier-Stoke (PNS) marching vperator, hence, Eq. (3.32) is referred to
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as a PNS-ADI splitting. The amplification factor for this splitting can be found to
be, '

1+ Cpns .
_ = 3.33
gPNS-ADI 1+ CF] + CPNS ( )

in which,
Cpns =0f0] (1 — cosw, + tsinw;)(cosw; + i8inw, — 1)+
10, 0y(cosw; + isinw; — 1)sinwy, + 20; v(cosw; +isinw, — 1)(1 — cosw,).

Note that if a~ vanishes, the error Cpyns is zero and the PNS-ADI splitting is

equivalent to the fully implicit scheme.

3.3.5 Algorithm Comparisons

The amplification factors for all four algorithms noted above can be numerically
computed over the entire spectral plane for w, and w, ranging from 0 to ». Again,
to make results more concise and readable, only the variation along the diagonal
line (w; = wy) on the spectral plane is calculated. Two cases are studied, they are,

1. Subsonic: 0} = ~07 =0, =v=CFL
2. .upersonic: 0} =0, =v =CFL, o; =0

The first case is analogous to the subsonic flow, where both upstream and
downstream propagations are significant. The second case simulates supersonic
flow by setting a~ = 0. Both cases assume uniform CFL numbers in the z and y
directions. |

Results of these two cases are plotted on Fig. 21 and Fig. 22 for a CFI, of
10. For the first case. both the fully implicit and the DDADI algorithms give
monotonically decreasing eigenvalues, and these eigenvalues reach their minimums

at the wavenumber 7. The eigenvalue first decreases, then increases to a local

maximum near the wave number n for the ADI and PNS-ADI schemes. In the

second case, all algorithms except the ADI splitting give monotonically decreasing
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eigenvalues. This ic due to the factorization errors of the ADI splitting even when
a~ is zero. The eigenvalue of the DDADI splitting is slightly smaller than that of
the fully implicit scheme and the PNS-ADI splitting in the second case. Again, the
naturally dissipative characteristic of upwind schemes is observed by noting that
the eigenvalues are much less than unity near the wave number 7.

As a final test case, the eflects of CFL numbers on the magnitude of the eigen-
values are shown in Fig. 23 for the subsonic case (a~ # 0). As can be seen, increasing
the CFL number tends to magnify the eigenvalues for the PNS-ADI splitting, thus
a CFL number of 10° is inferior to a CFL number of 10 as far as convergence is
concerned. On the other hand, the DDADI splitting is insensitive to the CFL num-
ber. Effects of the CFL number on ADI and fully implicit schemes are similar to
those on PNS-ADI and DDADI schemes, respectively.

Among the four algorithms, the fully implicit scheme and the DDADI splitting
can be expected to give better convergence rates than the other two splittings,
since they have smaller eigenvalues over the entire spectrum. The DDADI splitting
is superior to the other two approximate procedures and is as good as the fully
implicit scheme. The PNS-ADI splitting will give better convergence than the
standard ADI splitting since they have similar behavior in subsonic regions (a~ # 0)
and the PNS-ADI scheme is more dissipative in supersonic regions (a~ = 0j. All
four algorithms can be shown to have eigenvalues always less than unity, hence they
are unconditionally stable for the two-dimensional Burger's equation.

Based on the results of stability analysis, the proposed hybrid algorithm which

uses upwind difference in the streamwise direction and central difference in the

cross-stream direction proves to be unconditionally stable for the Burger's equation

for fully implicit and all three approximate procedures investigated.
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The stability results discussed above are based on first-order upwind differ-
encing and the scalar modeled equation. For algorithms based on more accurate
second-order upwind differencing and the vector equation, the stability results may
be quite different from the results given above. For instance, the approximate fac-
torization error term associated with the product of a*3/9z and a~3/3z in the
Parabolized ADI scheme (Eq. (3.32)) reduces to zero for the vector equation since
A* A™ is identically zero for both the subsonic and supersonic cases. This implies
that the PNS-ADI procedure will give better convergence than that predicted by
the stability analysis based cn the Burger’'s equation. In the following discussion,
this hybrid algorithm will be utilized to formulate numerical aigorithms for viscous

supersonic calculations.
3.4 Algorit for Viscous Supersonic Flows

As is well known, the hyperbolic nature of supersonic flows allows inviscid prob-
lems to be computed in a single pass. This capability is lost in viscous flows {or two
reasons. The first is the streamwise diffusion, but this is weak for high and even
moderate Reynolds number flows and may frequently be neglected, which results in
the TLNS equations. The second and more significant reason is the subsonic region
near the wall, where upstream influences exist. From a plyvsical point of view, this
subsonic region allows information to propagate upstream. This upstream propa-
gation prohibits a single pass solution and renders the space-marching procedure
unconditionally unstable. In the PNS approach, this upstream influence is removed
by a parabolized procedure which neglects the contribution associated with this
upstream influence s0 that a single sweep solution is allowed [26-29|. For problems
with significant upstream influence, such as thick boundary Jayers inside the nozzles

{5] and separated flows, global iterations are required. The main focus in this chap-

ter falls into this category, thus upstream effects must be retained by considering
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the global iteration from the Navier-Stokes equations. The simplification to PNS
procedures will be discussed in the next chapter.

Based on the results of stability consideration, in discretizing the governing
equations, we can take advantage of the predominantly supersonic character of the
flowfield by using flux-vector splitting in the streamwise direction, while retain-
ing central differencing in the cross-stream directions. Again, using Euler implicit
differencing in time, the result can be expressed as

Qr+t - Qn [“' +aE':- oF
At ¢ a¢ an

-H- —(RlaQ‘ R,QQ-’-)] =0 (3.34).

If we assume the flux vector E is homogeneous, it can be split according to

Matrices A* and A~ are the split Jacobian matrices given by
AY = MATM[Y, AT = MA M}

in which,
AT = (Ag+1A¢gl)/2,  Ag = (Ag = |A¢l)/2.

The quantities E* and £~ have to be upwind differenced according to the signs
of their individual eigenvalues. In supersonic regions, £~ vanishes and Eq. (3.34)
provides an algorithm which can be solved by a marching procedure in the £ direc-
tion. The difficulty is that the supersonic region is coupled to the subsonic region

where upstream influence exists. Consequently, both regions must be solved mulii-

ple times. The following discussion formulates numerical procedures for Eq. (3.34)

based on the algorithms consicered in Section 3.3.
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3.4.1 The Standard ADI Procedure

The first procedure considered is the standard approximate factorization (8,9
of the upwind differenced system. In this procedure, the £ and n directions are

split, and the discretized version of Iq. (3.34) in delta form becomes,

]
[I-atD + At(f-At + —=AD) - atd) ™!
A A€
3 5 (3.35)

d 3 = '
_ ——PB - _ _ —B.. = - AtR
[I-AtD + AtanB A‘an(R‘an Byy + Ry a"B 2)|AQ A

where, the residual vector R’ is,

dE* QE- oF - 9, 80, 3Qz .,
r_ bl - — n ) 3.30
The Jacobian matrices A and A; are,
. OE* . 9E-
A¢ = = 3 t = —-—
30 Py

where the subscripts t are used to distinguish the true Jacobians Af from the
matrices A%, The first operator in Eq. (3.35) is block penta-diagonal for second
order upwind differencing and is block tri-diagonal for the first order scheme. The

solution procedure of Eq. (3.35) is similar to that o” the implicit ADI scheme and

will not be repeated here.
3.4.2 The Diagonally Dominant ADI Procedure

The second approximate factorization procedure is the DDADI method. To
express this algorithin, we must discretize the equation in £ and t before factoring.
The explicit discretization in n ic not necessary to specify the algorithm and the

derivatives in n imply central differencing. The basic philosophy of the DDADI!

procedure is to place as tnany terms as possible on the diagonal element before




splitting. This procedure can be expressed as

' A . 0 a d d

t -1
(- AtD+7c—AA—E(A — A7)

at o, 9 -, 98, 3 3
. {r- AtD+KA6A +At[6£ t 5B (R; Bux - Rzg-Buz)]}AQ

= -AtR'
(3.37)

in which, k = 1 + /2. The quantity x is zero for first order upwind differencing
and is one for second order upwind differencing.
Similar to the derivations discussed in Section 3.3.3, tue DDADI splitting will

be solved by the line Gauss-Seidel relaxation method, which includes the forwerd

marching, ‘
, 7] o d g -
{D +At[a—B - 5—(316—3;:1 + RzaBuz)l}AQ =
Eryn —(EF E} ) -2(E +(EX,))
— Al {( ) A(E 1= IJ) +IC( c,;) ( a2A12) ( t- 2)) (338)
E- 3_F_ - an 3Q2
and the symmetrical backward marching,
d d d d -
{ [aﬂ ( 155 Bur + Ra g 2)]}aQ
_At{(EH-l.J)mH (E'—'))o _K'(E ) Z(E“H};n-o’l +(E‘+2))n+l
A€ 24¢
. dE*+ OF 3Q1 9Q,
+ +—=—-H - — R + R —=
(3.39)

where, AQ" = Q - Q" and AQ"“ = Qn+! - C:) are used to update variables

immediately after each forward or backward sweep. respectively. The diagonal term
D' is,

; sy -
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Both forward and backward marching operators involve the solution of a block
tri-diagonal matrix. The combination of Eq. (3.38) and Eq. (3.39) completes one

iteration step.

3.4.3 The PNS-ADI Procedure

The third approximate factorization procedure considered is also a forward-
backward scheme that is designed to give a PNS-like sweep in the forward direction
and a partial backward sweep that is required only in those regions where the flow
is subsonic. Because of its analogy with PNS algorithms, this procedure is referred

to as a PNS-ADI scheme. This scheme can be described as,

a 6]

a ., a a . -1
(] - AtD + A![gg/\‘ + ;3—7;-8 - ég(RlanB“ + Rgan By2)i}(J - AtD)

o -
(I -ath+ Ata—iA,’)AQ = -AtR

(3.40)
As will be shown later, the first operator is exactly the time-iterative version of a
PNS procedure, as wili be discussed in detail in chapter 4. Again, this operator
is block tri-diagonal at each £ location. The last operator reduces to the identity
operator in Jupersonic regions where A, vanishes, and is only block bi-diagonal
in subsonic regions. Thus, in supersonic flows, the PNS-ADI! procedure becomes a
marching procedure, but in subsonic regions it retains the influence of the upstream
acoustic waves. Because the backward operator is only necessary inside the subsonic
layer, the computational time involved in one iteration for this PNS-AD! algorithm

is less thar that for the DDADI algorithm.
3.4.4 Direct Soluticn by Flowfield Partitioning

For a typical high Reynolds number supersonic flow, the flowfield can almost be

solved by a pure \narching procedure. Only the thin subsonic layer adjacent tn the

wall prevents this marching algorithm. This suggests a direct solver based on the
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flowfield partitioning according to the distinct physical nature of Lhis predominantly
supersonic flow. As is given in Fig. 24, the flowfield is partitioned into three parts.
Domain A is composed of all the points that are supersonic. Domain B includes all
the points that are subsonic (although it may also include some supersonic points).
Domain C is the interface line between domain A and domain B. It is chosen such
that all points on the line (domain C) are supersonic. Let Q,4, @5, and Q¢ denote

all the dependent variables in these domains. These unknowns are related by
AaQa +CaQc =Ry
BpQp + CpQc = Rp (3.41)
AcQa + BcQp +CcQc = Re
which indicates that the unknowns in domain A are coupled only to unknowns at
domain C and are independent of unknowns at domain B. Similar statement holds
for domain B, while domain C is coupled to both A and B.

Since all points are supersonic at domain A, the operator A4 can be efficiently
solved by a marching procedure. The operator Bpg is block tri-diagonal with block
size equal to 4 x Jg, (Jpg denotes the number of points in n direction inside domain
B). This block tri-diagonal matrix is large, but the size decreases rapidly as the
number of subsonic points decreases (as for thin subsonic layers). Both Q4 and

Qp can be solved easily if the unknowns Q¢ are given. In fact, Q¢ can be solved

according to

[AcA;'Ca + BcBR'Cr - Cc|lQc = AcAL ' Ra + Belig' Ry = Re (3.42)

which is obtained by the substitution of the first and the second equations in
Eq. (3.41) into the last equation. The left hand side operator of Eq. (3.42) is a
dense matrix with the size equal to 4 x [, with [ representing the number of points

in the £ direction for the entire computational domain. This matrix can be effi-

ciently solved by an iterative method in 4 to 6 iterations, because the influence of
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downstream points on upstream: points is weak if all points along domain C are
supersonic.” This partitioning technique allows a direct solution procedure to be
obtained. The direct solution without any approximate faclorization implies the
CFL number can be as large as possible, thus rapid convergence can be obtained.
However, the computational time involved in one iteration for this direct method is

much more than those for approximate procedures if too many subsonic points are

involved.

3.6 'Alggﬂthm Comparisons

Based on the physics of supersonic flows, four different upwind algorithms asso-
ciated with their stability analyses are discussed in the last two sections. However,
the computational efficiency of these numerical procedures is yet to be identified.
Before comparisons to be made, two concepts must be paid attention to. First,
we note that all four methods described above are concerned with using different
algorithms to solve the same equations. The residuals on the right hand side of
Eq. (3.35), Eq. (3.37), Eq. (3.40), and Eq. (3.41) are identical in terms of both par-
tial differential equations and finite difference representations. As AQ is driven to
zero, all four methods provide the same steady state solution as given by Eq. (3.36).
A check of the converged solutions from the computer codes verifies that these so-
lutions are identical to six or seven digits. Second, since all methods give tlic same
solutions, the only thing to compare is the p&th a specific algorithm takes to steady
state. Therefore, it is of interest to compare both the number of iterations required
for AQ to reach the machine accuracy and the total CPU time required. The nuin-
ber of iterations required shows the numerical efficiency of cach algorithm, while the
CPU time required indicates the cost per iteration step. The latter is affected by

the arithmetic operations involved in an algorithin and the computer architecture.

Present results are for the scalar machine, IBM3090-180. Slightly different results
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may be obtained for a vector machine.

The test problem for the comparison follows is the laminar supersonic flow
through a 15° conical nozzle with an expansion ratio of 30. The nozzle geometry
and the 21 (axial) by 40 (radial) grid are shown on Fig. 25. At the starting plane,
a constant Mach number flow (M = 1.02) with zero contravariant velocity V was

chosen. The nozzle Reynolds number based on the throat radius is 105. The

converged solution showed that with this highly stretched grid, the subsonic portion
of the boundary layer had grown to nine points at the exit plane. All calculations
are done without artificial viscosity for the upwind-central differencing formulations.

Boundary conditions are implemented by the procedures given in Section 3.2.1.

Convergence rates based on the number of iterations for the four algorithms
mentioned above are shown in Fig. 26. The linear convergence on these semi-
logarithmic plots until machine accuracy is reached gives indication that the codes
are error-free. All calculations started with initial conditions which were obtained
from the single forward sweep through the flowfield with the PNS algorithm (The
details of PNS algorithms will be given in chapter 4). The result shown for each
algorithm corresponds to the optimum CFL for this scheme. These optimums are
shown in the figure. Boundary conditions are impiemented by the implicit wall
boundary procedure. In terms of number of iterations required the ADI scheme
is seen to be the slcwest. It also has the lowest optimum CFL of 5. The DDADI
scheme is the fastest of the three approximate methods and converges almost aa
rapidly as the direct method. The DDADI algorithm converged most rapidly with

CFL at 5000, above this value, convergence becomes independent of CFL.

Figure 26 also shows that the PNS-ADI algorithm gives excellent convergence

(it converges to machine accuracy in 70 iterations). This rapid convergence was

not properly predicted by the stability analysis based on the scalar equation. The
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Figure 26. Convergence in terms of number of iteration of 2-D supersonic
algorithms with true Jacobians
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optimum CFL lor *he PNS-ADI procedure is around 100, beyond that, convergence
rates tend to slow down. The optimum CFL for the direct solver was about 10°
and the convergence remained the same for CFL numbers up to 10'?. The conver-
gence rate [or the direct procedure was somewhat disappointing in that it required
25 iterations to reach the machine accuracy. With the fully implicit scheme, the
numerical procedure can normally converge to machine accuracy in 8 — 11 iterations
(42]. This normal convergence was not obtained with the current analysis code.

Comparisons of convergence rates in terms of CPU time are shown in Fig. 27.
The ADI method is seen to require the most time to reach machine accuracy. The
direct method is just slightly faster than the ADI method; however, if we could
attain a factor of three improvement expected above, it would be competitive with
the fastest procedure. The PNS-ADI and the DDADI schemes are quite competitive
and are about a factor of ten faster than the standard ADI scheme. Although, in
terms of number of iterations, the PNS-ADI method is slower than the DDADI
method, the deficit is seen to be offset by less computational work involved in one
iteration for the PNS-ADI procedure.

As demonstrated in Chapter 2, the use of the true Jacobian has significant ef-
fects on converge:ice. The same comparison was made for all four methods by using
approximate Jacobians A* instead of A on the left-hand side of corresponding
discretized equations. The convergence rates in terms of both number of itera-
tions and CPU time are shown in Fig. 28 and Fig. 29. All procedures except the
ADI] method slow down substantially due to the approximation in Jacobians. The
convergence rate (both in terms of iterations and CPU time) for the ADI rnethod
actually improves slightly. This shows that the convergence rate for the ADI scheme
is insensitive to the Jacobian matrices. Note also that corresponding optimumn CFL

numbers for three approximate methods change if approximate Jacobians are used.
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Figure 27. Convergence in terms of CPU time of 2-D supersonic algorithms
with true Jacobians
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3.6 Nozzle Flowfleld Predictions

To demonstrate the capabilities of present upwind-central difference algorithms,
the flowfields in two nozzle geometries were computed. The first geometry was che
15° conical nozzle shown on Fig. 25 except here a 21 x 70 grid was used. The second
nozzle was the contoured geometry shown in Fig. 30, with a grid ol 75 x 50. The
area ratio of this nozzle was 272 : 1. In both nozzles, a throat radius of 10 mm. was
chesen.

The properties of a typical rocket nozzle combustion gas were used for all
celculations, including v = 1.24 and Cp = 3043J/(g°I(. Both nozzies were run at
tne stagnation pressures of 35 and 3.5 atm., corresponding to nozzle throat Reynolds
numbers of 1.4 x 10* and 1.4 x 10°. The stagnat'on temperaiure was chosen to be
3500° K. The results for the conica! nozzle were for laminar flows with the molecular
viscosity varying according to the Sutherland law,

T T .+

u — —
ﬂr—(Tr) T+S

where, u, is the reference viscosity at a reference temperature of 7, and S is the
Sutherland constant. Those results for the contoured nozzle were calculated for
both laminar und turbulent flows. For turbulent caiculations, the algebraic model

by Baldwin and Lomax [12] was used.

3.6.1 Verification of Solution Accuracy

To verify the accuracy of present upwind-central differencing algorithms, the
resu.ts obtained from present analysis codes are compared to those irom the MOC
procedure |4]. Figure 31 plots Mach number contours for the inviscid supersonic flow
through the high-expansion contoured nozzle. The upper half shows results from

the MOC procedure and the lower halfl presents those from present algorithm-=
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As shown here, the Mach number contours computed by using current upwind-
central differencing schemes agree very well with the MOC predictions, except for
the discrepancies near the centerline, where the MOC procedure fails to resolve the
symmetry conditions due to the presence of a weak oblique shock.

Figure 32 shows the comparison between current algorithms and the MOC pro-
cedure by plotting the computed wall pressure distribution along the axial direction.
Again, the inviscid results from current algorithms show excellent agreements with
those from the MOC procedure. The corresponding wall pressure distribution for
viscous calculations with a Reynolds number of 1.4 x 10° is also shown on the fig-
ure. The viscous wall pressure is slightly higher than that of inviscid results. This

illustrates that viscous flows expand less due to the presence of the boundary layer.
3.6.2 Effects of Downstream Boundary Conditions

All numerical algorithms mentioned above require a downstream boundary
condition at the subsonic part inside the boundary layer, since the eigenvalue U ~ C¢
is negative if U < C¢. Previous researchers have usually implemer.ted this boundary
condition by extrapolating from nside the computational Jomain. Aithough this
does simplify the numerica) procedures at the downstream boundary, it violates
the physical conditions, especially when the boundary layer is thick. Further. an
extrapolated boundary condition does not allow flowfields Lo respond to downstreain
pressure changes as they must in physical situations. In the case of nozzle flows, a
high back pressure will cause the boundary layer o thicken and the flow to separate.

One case of interest is when an exhaust nozzle is operated in an altitude facil-
ity where the ambient pressure in the facility is only approximately matched to the
nozzle expansion characteristics. This mismatch can provide significant diflerences

between test stand performance and eventual performance in space because of the

effect of the ambient pressure on the nozzle boundary layer at the exit. An analo-

e
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upwind/central difference algorithm
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gous but much more severe result of this mismatch is that flow separation occurs
inside the thick boundary layer of an altitude nozzle when it is operated at sea-level
conditions. The examples shown later will refer only to the case of small back pres-
sure mismatches and will not extend to the massive separations that are observed
at sea level conditions. Calculations of these effects require that the downstream

boundary conditions be correctly implemented.

The downstream boundary conditions for the present ir scigation are based
on MOC procedures. At the early stages of iteration, a certain number of points
at the exit plane will become subsonic due to viscous diffusion. The back pressure
is then specified for these subsonic points on the exit plane. The procedure used
is similar to that in Eq. (2.15). As the iteration proceeds, reverse flow will appear
inside the subsonic layer if the back pressure is high enough. For these reentry flows,
three eigenvalues (U, U, and U — C) become negative(assuming the reentry velocity
is less than the sonic speed) and standard inflow boundary conditions are applied.
This implies three conditions must be specified from outside the domain while one
characteristic equation must be used for information coming from inside the domain.
These three specified quantities are chosen as the stagnation pressure, the stagnation
temperature, and the flow angle, corresponding to the ambient conditions. Since
the external surroundings are interpreted as being at rest, the stagnation pressure
is Laken as the back pressure. For those subsonic points with positive (outllow)
streamwise velocities, only the back pressure is specified and three equations are
used in agreement with traditional outflow boundary procedures. The decision as
to whether inflow or outflow boundary conditions are used depends on the signs of
eigenvalues at each grid point as determined from the previous iteration. The above

procedure for reentry flows is reliable for modestly sized recirculation regions but

eventually breaks down for large recirculation regions because oscillations between
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inflow and outflow occur.

Reeult; of a series of calculations in which the pressure at the subsonic part
of the outflow boundary was specified are shown on Figs. 33-38. Figure 33 shows
Mach number contours for the conical nozzle at the lower Reynolds number. The top
plot shows the results by using extrapolation boundary conditions. This boundary
condition resulted in a back pressure to stagnation pressure ratio Py/P° of about
2.5 x 10~3. The high Mach number gradient near the wall gives an indication of the
boundary layer thickness. The middle plot shows the effect of raising the back pres-
sure to Py/P° = 5 x 1073, At this back pressure, the boundary layer is thicker and
a small recirculation zone presents near the exit. As the back pressure is increased
further, this recirculation region continues to grow and to propagate upstream as
indicated by the bottom plot where P,/ P° = 7 x 10~3. Corresponding calculations
with back pressures below 2.5 x 10~2 showed that the boundary layer at the exit

accelerated and became thinner. The wall temperatures for these calculations are

3000°K.

The dotted lines in Fig. 33 represent the Mach number contours from one-
dimensional inviscid calculations corresponding to the same stagnation conditions.
As is seen, the presence of the boundary layer in the two-dimensional calculations

has resulted in less expansion and thus slower speeds near the exit.

As a further indication of the character of these flows, the axial velocity (u)
profiles at the exit plane for various back pressure levels are shown on Tig. 34.
This figure shows how the boundary layer grows as the back pressure is increased
and the rate of thinning of the boundary layer as the back pressure is decreased.

Furthermore, the width of the recirculation zone at the exit plane is clearly shown.

The results for turbulent flow in the contoured nozzle at the higher Reynolds

number (P° = 35atm) are shown in Fig. 35. Again, the top plot shows Mach
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Extrapolation, Pb/Po = 2.5 x 10'3

Figure 35. Converged Mach number contours .: conical nozzle using various
back pressures.
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various back pressures
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number contours for the extrapolated boundary condition case. The middle and
the bottom plots show the resuits of higher back pressures. The extrapolation case
here corresponds to the back pressure ratio Py/P° of 0.33 x 10° ¥ The middle plot
is for a back pressure of 0.7 x 10~2 while the lower one is for 1.1 x 1072, Similar

thickening and separation of the boundary layer is observed.

Because of the interchange of momentum inside the toundary layer for tur-
bulent flows, a larger increase in P,/ P° is required to obtain the the same de-
gree of separation, as is verified by comparing the laminar flow results shown on
Fig. 36. For this laminar calculation, the extrapolated boundary condition cor-
responds to a lower back pressure (Py/P° = 0.29 x 10~2) than to the turbulent
case, because the much thinner boundary layer allows more expansion to be accom-
plished in the nozzle. Also, the laminar calculations show a larger separaiion region
at Py/P° = 0.7 x 10™2 than the turbulent boundary layer at P,/P° = 1.1 x 10°3.
The u velocity profile at the exit plane for laminar and turbulent boundary layers
are shown on Fig. 37 and Fig. 38, respectively. The turbulent case has a tlicker

boundary layer and steeper gradients at the wall than the laminar calculation.

3.0.3 Effects of Reynolds Number and Wall Temperature

Although calculations with two different Reynolds numbers have been shown ir;
the last section, some additional results of changing Reynolds numbers are detmont-
strated here along with comparisons of the effect of wall temperature. Figur: 39
shows Mach number contours for the conical nozzle at a Reynolds number of 1.4~ 194
but with a lower wall temperature of 300°/. The upper plot is for extrapolation
boundary conditions, and the lower one is for a back pressure of 7 x 107, analogous
to the bottom plot of Fig. 33. These results show that colder wall temperatures
give a much thinner boundary layer. As a cnnsequence, a smaller separation region

is observed as compared to the hot wall boundary layer.
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Extrapoiation

Figure 39. Converged IMach numter contours for conical nozzle at lower
Reynolds number and colder wall temperature
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Figure 40. Converged ach number contours for high Reynolds number
Extrapolated boundary conditions
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The effects of Reynolds numbers on the conical nozzle results can bhe seen by
comparing the Mach number contours for a stagnation pressure of 35 atm in Fig. 40
with those for the lower Reynolds number case with P = 3.5 atm on Fig. 33. Again,
a thinner boundary layer is obtained for the higher Reynolds number case. Only
the results based on the extrapolated boundary conditions are given in Fig. 40.

As a final comparison, results for the contoured nozzle are shown on Fig. 41 for
the low Reynolds number case (3.5 atm) at two different v-all temperatures, 3000° K
and 300° K, based upon turbulent boundary layer assumptions. As [or the laminar
case, the colder wall temperature results in a much thinner boundary layer.

The effects of Reynolds number can be seen by comparing the results in Fig. 41
with those for the turbulent case in Fig. 35. Again, a lower Reynolds number causes
a dramatic increase in the boundary layer thickness. At this low Reynolds number,
a check of the maximum eddy viscosity in the boundary layer profile reveals that

the flow is no longer “turbulent” although the turbulence model is still included.
3.6.4 Effects of Coupled Wall Cooling and Nozzle JI'lows

As we have seen in previous sections, the wall temperature has a significant
effect on the nozzle flowfield. While specified temperature or heat flux boundary
conditions are frequently imposed at wall boundaries. In viscous problems, rocket
nozzle walls are in general regeneratively cooled by propellant Aowing inside the
wall. This poses a problem when neither the heat flux nor the wall temperature are
known a priori but both must be completed as part of the nozzle flowfield solution.
In the present section, we develop a coupled method for soiving the wall cooling
flow along with the nozzle flow.

Figure 42 shows the schematic of a nozzle surrounded with cooling tubes. The

coolant is assume to flow from the exit toward the inlet. To simplify the problem,

the following assumptions are made:
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Figure 42. Schematic of nozzle with wall cooling
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1. The outer wall of the cooling tube is insulated.

2. The wall between the coolant the nozzle flow is thin and of high conductivity
so that the temperature of the cooling liquid can be taken equal to that of the
wall(Ty).

3. The cooling liquid has a constant specific heat (Ci).

Let yo, and n denote the radius and the inward normal direction at an arbitrary

wall location (&,n). Referring to Fig. 42, the energy balance of the control volume

at a wall location gives

. oT,
mCiTy + ¢"dA = mC(Ty - -#d{)
where dA represent the surface area wetted by the cooling liquid. If the nozzle wall

is completely surrounded by cooling tubes, the quantity dA can be expressed in the

general coordinate system as

2ry
dA = J"'\/nz + n3d€.

By the Fourier’s law and geometrical relations, the heat flux ¢ is

1" aTw - "k aTw 2 2 aTw
g =k an m[(f:ﬂ:+£yﬂy) 3¢ + (n; wn,) an l

in which, k is the thermal conductivity of the gas. Substituting expressions for ¢"

and dA into the energy balance equation, we readily obtain

?BIEL””F( 2.;,,,’)?1‘2 = 2’.9_7.‘.“1 (3.43)

1
'j[(ez'h'*fy')y) Ne v 30 7 ¢

where j is the normalized wall radius (§ = yu/y() and Bs is the non-dimensional
Biot number defined by
mC,

Bi =

- 27|'ky‘ .




11

The non-dimensional Biot number represents the ratio of wall cooling to heat con-
duction in the geas.

The new thermal boundary condition, Eq. (3.43), can be coupled in an implicit

- manner to the discretized governing equations provided that the temperature at the
downstream end of the wall (the inlet temperature of the cooling liquid) is given.
‘The numerical procedure is based on the DDADI scheme. The wall temperature at
the exit is fixed at the given coolant inlet temperature. In the discretized equation
of Eq. (3.43), the derivative 37, /93¢ is backward differenced since the coolant flows
from downstream to upstream. The derivative 8T, /3n is one-sided diflerenced
and is coupled to the unknowns of interior points. The implicit treatment of this
discretized boundary equation is similar to the boundary procedure discussed in
Section 3.2.1.

Typical Mach number contours for supersonic flows through the high expansion
ratio nozzle given in Fig. 30 by using this wall cooling boundary condition are shown
in Iig. 43. The top plot is for adiabatic wall conditions, the middle and the bottom
plots are for Bi = 10° and Bi = 10%, respectively. The inlet temperature of
the coolant is 500°K for the last two cases. The Reynolds number is 1.4 < 10
and the flow is assumed laminar for all cases. Dramatic changes in the boundary
layer thickness and the flowfield near the exit when this more appropriate cooling

condition is incorporated can be observed. The results shown are for demonstration

only, for practical applications, the parameter Bi should be calculated according to

the true wetted area of cooling tubes and real properties of thie coolant.

3.6.6 Nozzles with Subsonic Inflow

So far, the examples of supersonic nozzle flowfield predictions we have seen stars
from an arbitrarily given Mach number distribution at the inlet. For real nozzles,

the flow enters the diverging section with a non-uniform Mach number distribution.
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To take account of this effect, the computation must begin with the subsonic section
of the nozgle. As we have shown, the transonic flow through the nozzle throat region
can be efficiently calculated by the implicit ADI scheme. For flowfield computations
over realistic nozzles which contain a short converging-diverging section and a very
long diverging section, the following procedure is recommended. The nozzle can be
segmented into two parts. The first part contains the entire converging section and
a small portion of the diverging section. The divergent portion is chosen sufficiently
large to ensure the flow at the flow at the last few rows of grid points is supersonic
except for the boundary layer. The implicit ADI algorithm can be applied to this
transonic portion and the resulting flowfield near the exit can be used as the input
for subsequent supersonic calculations for the remaining part of the nozzle. The
previously described supersonic algorithms can then be easily applied to flowfield
computations in the diverging section.

Typical laminar results of the computation over the contoured nozzle starting
from subsonic inflows by using the procedure above are shown in Fig. 44. The grid
is 300 x 50 with 300 in the axial direction and the Reynolds number is 1.4 x 104,
Comparisons with previous results using constant Mach number at the inlet (Fig. 41)
show that the two-dimensionality near the throat has only minor effects on the

flowfield results for this typical example.
3.6.0 Verification of Global Conservation

1t is generally agreed that for flows with discontinuities, the strong conservative
form of the equations plays an important role in global conservation. For flowfields
that do not contain discontinuities, the fully conservative form is sometimes assumed
to be less important. The primary application of present numerical algorithins are

for rocket nozzle flowfield predictions. To accurately predict the flowfield and noz-

zle performance, global conservation is of great importance; however, “good” nozzle
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designs will generally be free from shocks and it might be assumed that the non-
conservative equations are adequate. Because of the importance of accurate global

- mass conservation and to demonstrate the necessity of using the conservative form,
mass conservation was monitored in all analysis codes throughout the course of
this study. For better understanding of the necessity of the strong conservative
formulation, a few computations with the weak conservative form of the governing
equations were also done for typical high expansion nozzle flows without disconti-
nuities. The weak conservative formulation is identical to Eq. (3.9 except that the

metric coefficients are left outside the derivatives,

aQ JE oF oF oF oE, ar,
= 4 = — — — = H +n;— =, 3.44
3¢ T ¢ ae“"an”"ag*"’an MkEr wal M e (3.44)

The global mass conservation results for this weak conservative and the strong
conservative formulations are compared in Fig. 45 for the high expansion ratio
contoured nozzle. The 75 x 50 grid shown in Fig. 30 are used for both cases. As
shown on this figure, the sirong conservative form maintains the mass flow rate
error within 1%, while the weak conservative form gives a maximum mass error of
about 30%. In fact, for all the cases computed to date with the strong conservative
form, including calculations for a nozzle with expansion ratio as high as 700, the
maximum mass flow rate errors have been maintained below 1.

The reason for the failure in weak conservative formulation is because it does
not conserve the mass in its finite difference representation while the Jully conser-
vative form does. Therefore, the results shown in Fig. 45 is to be expected. The

above results demonstrate that even for flows without discontinuities, the strong

conservative formulation is necessary for maintaining global conservation.
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CHAPTER 4

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO
THE PARABOLIZED NAVIER-STOKES EQUATIONS

As indicated in Chapter 1, the parabolized Navier-Stokes equations have heen
extensively used as an alternative to the Navier-Stokes equations for the solution
of compressible as well as incompressible viscous flows due to their computational
efficiency. To assess this efficient numerical procedure and place it in a unified
context with the present Navier-Stokes procedures, the parabolized technique is
also addressed here. In Chapter 3, time-iterative numerical procedures based upon
the predominant physics of the flow were formulated for the solution of thin-layer
Navier-Stokes equations. Starting from these time-iterative Navier-Stokes equa-
tions, it is shown in this chapter that the parabolized equations can be obtained as
a subset of the Navier-Stokes equations by means of flux splitting procedures. The
traditional pressure gradient splitting devised by Vigneron is shown to be a specilic
type of flux vector splitting while the method of characteristics based splitting devel-
oped for the TLNS equations in Chapter 3 is also shown to split the streamwise {lux
vector into parts with positive and negative eigenvalues which can also be treated
in a “parabolized” sense. This new PNS procedure is formulated by neglecting the
flux vector with negative eigenvalues. The computational results obtained by using
both the classical and the new PNS procedure are compared to those obtained with
the TLNS algorithms to verify the accuracy. The flux splitting interpretation of the

PNS procedure allows a well-behaved global iterative PNS procedure to be defined

based on the PNS-ADI method presented in Chapter 3.
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4.1 1 -V 1 vier- es Equations

The thin-layer Navier-Stokes equations as given in Eq. (3.11) will be used as a
starting point for the present approach. We first split the streamwise flux L into
two parts,

E‘ = E:+ + E_ (4.1;

where the cigenvalues of the Jacobians of E+ and E are positive and negalive,

respectively. With the substitution of Eq. (4.1) into Eq. (3.11), we have

3Q 9E*  9E- ap_ - 3Q, aQ2
at ) BE + a¢ +8n H+6n(Rl an H R an

(4.2)

Note that the splitting given by Eq. (4.1) is used conceptually to indicate a general
expression of flux-vector solitting, which might represent the Steger and Warming
splitting defined in Chapter 3, but which could also represent any other splitting
procedures. As examples, we will in addition to the Steger-Warming splitting also
discuss a splitting based upon Vigneron's [26] parabolization method.

Although the approach is equally applicable to homogeneous or inhomogeneous
flux vectors, for simp. .ity, we have restrict to the homogeneous case where £ = AQ
with A = 9E/3Q. Flux-splitting of the homogeneous vector is then reduced to

splitting the matrix A as,

A=AY + A" (1.3)

Here the eigenvalues of A* are positive and those of A~ are negative. From Lhe
g

homngeneity of the vector f), we have
E*=A*Q, E- =A7Q

which obviously satisfies Eq. (4.1).

In principle, both the streamwise and the cross-stream fluxes could be split.

Instead, we follow the traditional PNS approach, for which central differences are
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generally used in the cross-stream direction while upwina differences are vsed in
the streamwise Jirection. Thus, just as we did for the TLNS equations in Chapter

3, we have split only the streamwise ux E.

. Using Euler implicit diflerencing in time, the discretized version of Eq. (4.2)

can be expressed as

{I- AtD+At{%A:’ + %AT + %B-- %(RI%B“ +R258;B,,2)]}AQ = -AtR'

(4.4)
where R’ 1ias been previously defined by Eq. (3.36). Again. the true Jacobians of
E* and E~ areindicated by A} and A;, respectively and the spavial derivatives in
Eq. (4.4) must be treated consistently on both the left side and the right hand side.
Note a:30 that the derivatives containing A;” and A; must be upwind differenced

in the manner defined previously. Efficient solution of Eq. (4.4) requires -me sort

of apnroximalte factorization of the type discussed in Chapter 3.
4.1.1 Splitting Based on Characteristics

As the first of our two specific flux splitting procedures, we begin with one
based on the method of characteristics. As we have scen in the previous discussion,
the matrix A <an be diagonalized according to the similarity transformation given
by

-1
A=MN7 AM;

where the subscript of A has been dropped fbr simplicity. The matrix A is com-
posed of the right eigenvectors of the matrix .4 ..nd has been previously defined.
The diagonal matrix A contains four entries, U, U, U + C¢, and U - C. A straight-
forward splitting suggested by Steger and Warming [16] is,

(A +1AN
+ _\ Al
A --——2

1.5
(A — A} 1l

A= 22

2

e e O <R T e T T = TR e e e e '
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in which, |A| refers to the matrix composed of the absolute values of the elements

of A. From'Eq. (4.5) we readily obtain
AY = MAYM]', AT =MATM (4.6)
For the homogeneous case, the split flux vectors thus become
Et=4A%Q, E =4"Q.
According to Eq. (4.5), for supersonic flows, the matrix A~ is identically zero, and

A* is equal to A. For aubsonic flows, these matrices are A* = diag(U,U,U + C¢,0)

~nd A~ = diag(0,0,0,U ~ C¢).

4.1.2 Splitting Based on Pregsure Gradient

The second splitting under consideration is based on the suggestion by Vignercn
[26], who split the streamwise precsure gradient into two parts. His discussion of

dp/dz can also be interpreted as a flux splitting procedure given by,

pU 0
- U+ wé:p - _ Y | (1-w)ep
Fr=2 P E-=1% 4.7
J | pvU + wéyp J (1 -w)yp \4.7)
(e + p)U 0

This splitting recognizes that the streamwise ellipticity arises from the presst

dicat term inside the subsonic portion of the boundary layer. Due to this press.re
gradient, downstream information can propagate upstream. Thus, Vigneron's no-
tion was to separate the streamwise pressure gradient into parts, then, by choosing
the coefficient w properly, one can place those parts reaponsible for upstream influ.
ence iato the fMlux vector £~. 1he vector E+ therefore contains only those parts
governing the pyopagation from upstream to downstream.

The eigenvaluas of the Jacobian matrix of £+ in Eq. (4.7) - re the four roots

of the following polynomial,

(A-UY{A?=[y+1- wiy - DUA+ (Y +w-wy)lU? - wC?} = 0. (1.8)




121

The eigenvalues of A, are the roots of

)

MIA-(1-9)(1-w)U] =0.

These roots are found to be

AY =diag(U,U1/2{[(7+ 1) —w(v - 1)U £ \/(‘7 1)’ (w - 1)°U? + 4wC}})

A~ = diag(0,0,0, - (v - 1)(1 - w)V)
(4.9)

In keeping with our purpose, all four eigenvalues of A} = BE:'*/OQ. must be
positive, and those eigenvalues of A = dE~/8Q must be negative. For supersonic
flows (U > C¢), if we set w equal to unity, then A* becomes AT = diag(U,U,U +
C¢,U ~ C¢) and A~ is identically zero. All entries of A* are positive, thus the
splitting is completed by setting w = 1 for supersonic flows.

For subsoric flows (U < C¢), the cigenvalues of A are negative as long as

w < 1. On the other hand, the eigenvalues of A;" are positive if the three inequalities

U >0 '
[Y+1-w(r-1)U>0 . (1.10)

('7+w-v.m)U’--:..JC<2 >0

are satisfied. The first inequality is straightforward while the second is equivalent

to
welt!
-1
which is valid if w < 1. The third inequality in Eq. (4.10) results in
M}
< .
ST ()M (1)

where M is the streamwise Mach number defined by M, = U/C..
In summary, pressure gradient splitting based on Vigeneron's approach gives

the proper signs for eigenvalues of both A} and A, when the following conditions

are met:
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1. The streamwise contravariant velocitv is positive.
2. w is unity if the flow is supersonic.
3. w satisfies Eq. (4.11) if the flow is subsonic.

Three observations are noted here. First, the flux vector splitting in Eq. (4.7) is
analogous to traditional Vigneron-based PNS procedures. Second, the derivations
of the conditions for proper pressure gradient splitting given above differ from the
derivations given by previous investigators 3,26}, in which the same splitting criteria
are obtained by considering the steady state TLNS equations in both the inviscid
and viscous limits of the corresponding simplified equations. By requiring these
simplified equations to be hyperbolic along the streamwise direction in the inviscid
limit, and to be parabolic in the viscous limit, they arrived at the same conclusions
given ebove. In the present approach, the unsteady TLNS equations are considered,
the splitting criteria are then obtained by taking into account only the signs of
eigenvalues of the Jacobian matrix in the streamwise direction. Since the unsteady
version of the TLNS equations is hyperbolic in time, by forcing these eigenvalues
to be positive, we can easily complete the splitting without considering the TLNS
equations in the inviscid or the viscous limits separately. Third, in the formulation
of the pressure gradient splitting, the lux vectors E* and E- are defined without
a prior specification of the matrices A* and A~. In fact, the flux vectors £+ and
L~ defined by Eq. (4.7) are not homogeneous; thus no explicit representations of
A* and A~ for the pressure gradient splitting exist (as that given in Eq. (4.8)).

However, if we neglect the variation of w with respect to Q, the relations

E*=A}Q, E-=4A7Q

similar to Eq. (4.6) can be obtained, in which A} = 0£+,0Q and A] = 0L~ ;3Q.

Just as in the discussion of characteristics splitting procedure in Section 4.1.1,

we have split the lux vector into positive and negative parts.
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4.2 Obtaining the PNS Procedure from the Navier-Stokes Algorithm

In the last section, we have formulated general flux vector splitting for the
TLNS equations. In the special case if the splitting is based on characteristics,
we have shown in Chapter 3 that the resulting TLNS equations can be efficiently
solved by approximate factorization procedures. The traditional Vigeneron's parab-
olization procedure has slso been interpreted as a special case of the gencralized
flux-vector splitting TLNS equations. Based on this interpretation, the Vigen-
eron's Parabolized procedure is equivalent to ignoring the reverse sweep in a specific
flux-vector splitting TLNS »>rocedure. This suggests that a general parabolization
method can be devised based on an arbitrary flux splitting.

This generalized parabolization procedure can be achieved by simply neglecting
the parts of the flux vector E contributing to upstream propagation. If the vector
E- is identically zero (as it is in supersonic flows) the algorithm given in Eq. (4.4)
describes an alternating procedure in one direction. For those cases where E- is not
zero. v e can likewise obtain a “marching” procedure by ignoring the contribution of
E~. In other words, the streamwise ellipticity is suppressed by ignoring the elliptic
parts of governing equations, thus the new approximate equations become paraholic
in the streamwise direction. Again, we note that we must maintain consistency on
both sides of Eq. (4.4), so we also drop the operator dA; /3¢ on the left-hand

side. With this approximation, the left hand side of Eq. (4.4) becomes a parabolic

operalor,

{I—A¢D+At[53-€-A,* iB- —(R, 9 u,+R;a%B.;)!}AQ = —AtR" (4.12)

where the modified residual R" is also parabolized,
w000 ot

L . 4.13
Jg€ an an dr; )l (14:13)
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Equation (4.1?) defines a general parabolized procedure based upon any flux
splitting for which the eigenvalues of A are positive. This implies that there are
an infinite number of ways to accomplish the Parabolized Navier-Stokes procedures
and Vigneron's pressure gradient method is only a special case of these parabolized
procedures. With this general form of parabolized procedures, the splitting based
upon characteristics seems to be more “natural” than the pressure gradient splitting

in the physical sense. These two special cases of general parabolized procedures are

considered in the next sections.

4.2.1 Pressure Gradient Splitting

In the special case when E* is given by Eq. (4.7), Eq. (4.12) becomes the
traditional PNS operator as given by numerous authors {for example, Refs.26-29)
except that the time derivative is included. These time-iterative PNS equations
are to be solved by iterations at each streamwise location. In other words, since
Eq. (4.12) is now a marching equation (this implies no upstream influences exist),
it is clearly better to iterate to convergence in time at each line before advancing to
the next streamwise station. To define this time-iterative procedure more precisely,

Eq. (4.12) is rearranged as,

< At 9 a . a 3 -
{/-AtD + (1 + 2)AEA, +At[anB aq(R‘aq Bu + R:anBuz)l}AQ =
=t n - . - n 4 . - .
—A({(E‘J) -(Eo.’.—l,)') +K(E.L) '_ 2(E0-1,L +(Elt-2,l_)_
A 24¢
IF - 3 . 3Q 30, . "
+lan H D’I(Rl an + R 3 ) )

(4.14)

where x is O for first-order upwind differencing in the streamwise derivative and is 1
for second order differencing. The superscripts + denote that these quantities are to
be evaluated based on the converged solutions. The value of AQ on the left-hand

side of Eq. {4.14) is driven Lo machine accuracy by time marching at one station,
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and then the procedure marches to the next -station and so forth. As wiil be

demonstrated later, this iteration can be driven to machine accuracy in less than

10 iterations for two-dimensional problema.

4.2.2 Characteristics Splitting

If the flux vector E* in Eq. (4.14) is chosen as that given in Eq. (4.6), a
similar time-dependent PNS procedure can also be obtained. This marching pro-
cedure differs from the more traditional pressure gradient-split PNS procedure in
the parabolized approximation. As we have seen, the pressure gradient splitting
algorithm omits parts of the pressure gradient, while the characteristic splitting al-
gorithm neglects those parts with upstream-p-opagating acoustic wave. The latter
is more appropriately described by an appeal to the physics of the flow. The differ-
ences between these two algorithms are also indicated by the different eigenvalues
of the Jacobians of E*. As will be shown later, the calculations based on this PNS
procedure give results that are almost identical to or even slightly better than those

based on the pressure gradient splitting that is traditionally used.

4.2.3 -Iterative PNS Procedure

The PNS algorithms discussed above include the temporal derivative, while
in the traditional PNS procedure, the solutions are obtained by a simple space
marching without iterations. To obtain this marching procedure, we first re-write
Eq. (4.12) without using the delta form. By cancelling terms on the lefi-hand

side with those on the right-hand side (given in Eq. (4.13)), the time-dependent

algorithm becomes

9E* AF 9 P A

- o yn
3¢ +—a—'-’--H)-'Afa—n(Rla—nBv[+R25—’;Bu2)Q} =Q". (4.15)

{Q + At

Note that for characteristic splitting, £* does not cancel with A,*Q since, A # A*

if the flow is subsonic. Therefore, Eq. (4.15) is only approximately valid for the
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characteristic splitting algorithm, but this is not severe since in general the subsonic

layer is very thin. If we allow At to go to infinity, and use the chain rule,

dE* 9E+aQ _ ,,3Q
= ——— = A} 4.16
3 ~ a0 a¢ M ac (4.16)
Equation (4.15) then becomes
dE+ L 90 oF - @ 3 3 -
= —_—— - — -— -_— Ay . 4 7
3¢ A, 7€ a"+I:(+an(lhanB.,,+R;a"B 2)Q (4.17)

We can now linearize each term in Eq. (4.17) according to the Taylor series expan-
sions, i ) )
Fiqy= Fi+ BAQ
- . . (4.18)
H|+] = Hl + DAQ
where subscripts represent the £ direction grid number, B and D are Jacobians of
F and H, and Aé is now interpreted in a spatial ruther than a temporal sense,
AQ = Q.Hrl - él'
With the substitution of Eq. (4.18) into Eq. (4.17), we have,

(A} - A£l)+A€|fa—B - 73—(3. ,—a-Bv. + R:;-Bu:)l}.aé =

(1.19)
- Ael—— - H - —(RxaQ‘ BQ’)I

This equation now can be used to solve é.“ without iterations at 1 + | station
provided that Q, is given. Equation (4.19) is referred to in the literature as a
space-marching PNS algorithm. The formulation above shows that any (lux-vector
splitting defined by Eq. (4.1) can be used to obtain a distinct non-iterative PNS
algorithm. In particular, the pressure gradient splitting noted above gives the tra-
ditional PNS procedure. Equation (4.17) also chows that the characteristic splitting

suggested by Steger and Warming can be used to formulate a parabolized algorithm

as well.
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4.2.4 Comparisons of Time-Iterative and Space-Marching Algorithms

In the discussion above, both the time-iterative and space-marching PNS pro-
cedures are formulated. By intuition, one might expect that the space-marching
algorithm is more efficient than the time-iterative aigorithm because it does not
require loca] iterations at each £ station. There are, however, other issues involved.
To demonstrate this, we compare the differences between two approaches. First, we
consider the difference in the final converged solutions of the two methods. From
Eq. (4.12), if AQ is driven to zero, the steady state solutions of Lhe time-iterative

procedure can be obtained as,

oF
(A Q) —-—VT =0 (4.20)
where A*Q = E* and V.T. is used to represent the viscous terms. On the other
hand, the solutions of the space-marching aigorithm are,

aQ

A+
¢

-——VT =0. (4.21)

The n derivatives and the viscous terms are exactly the same for both methods. The
difference lies in the ¢ derivative, in which the time-iterative method utilizes the
conservative form, while the space-marching methnd employs a non-conservative
form.

To explore this difference further, we compare the finite-difference representa-
tions of the ¢ derivative in Eqs. (4.20) and (4.21). For clarity, we restrict to first
order in {. Upon discretization, the § deriva.ive in Eq. (1.20) becomes

(A* Q)41 — (A*Q),
Y3

while the one in Eq. (4.21) is

A;.é”»l "Q.u
1 AE '
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Because the first row of the matrix A% is related to the continuity equation, the non-
conservative form in Eq. (4.21) can be expected to give mass conservation errors.
For a grid which has no stretching in the £ direction, these mass errors are not severe
since the metric coefficients are constants in the ¢ direction. However, when grid
stretching is used in £, the mass error can be expected to accumulate with € because
of the variation in the metrics. Numerical experiments using the non-iterative
(space-marching) scheme show that a global mass error of order one is observed for
even a moderately stretched gr. 1. For highly stretched grids, this accumulation leads
to numerical instability. On the other hand, the time-iterative algorithm worked
well with either uniform or highly non-uniform grids. Consequently, the penalty
prid for local iterations in the time-iterative algorithm can be at least partly offset
by using a stretched grid.

An alternative procedure for ensuring mass conservation with non-iterative
scheme on stretched grids has been proposed by Schiff and Steger [43], although it
does not appear to have been widely used. In their approach, instead of directly
using the chain rule given by Eq. (4.16) to represent dE* /8¢ in Eq. (4.17), the flux
vector E is linearized before discretizing. This procedure is ohtained by noting that

the flux vectors at two consecutive locations can be linearized according to
E'\=El+47(Qi+1 - Q) (1.22)
E'=Er + A (Q - Q). (4.23)
By using Eq. (4.22) and Eq. (4.23), we have

141 1 _L + ~+-1_ 4+ . |
¢ Af - AeA‘ aQ Af(A' A:-])Ql' (1.24)

9B+ EY, - E!

With the use of Eq. (2.24) in Eq. {4.17), the space-marching PNS algorithm gives

better mass conservation. Numerical experiments with this approach prove to be
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able to conserve mass within an error of 1% for a non-uniform grid in a moderate
expansion ratio (around 30) nozzle. However, for more realistic problems such as
flows through the 272 : 1 nozzle investigated in Chapter 3, the 75 axial grid lines had
to be increased to 300 to enable the modified space-marching algorithm to match
the conservative time-iterative method with 75 axial grid lines in accuracy. The
space-marching procedure without the Schiff-Steger modification led to global mass
errors of more than 50% even with 300 axial grid lines.

The second difference to be addressed is the requirement of a safety factor,
a, in defining the parabolized operator. Parabolized Navier-Stokes calculations
reported in the literature (for example, Ref. [29]) traditionally use a safety factor

in Eq. (4.11). This results in

< aYM}
1+ (v~ 1)M}

where the safety factor & is generally chosen as 0.85 or smaller. Numerical experi-
ments with the space-marching algorithm indicate that & can not be greater than
0.85 without numerical instability. On the other hand, with the use of the time-
iterative algorithm, & can always be set equal to unity. The results presented in the
next section also show that the solutions with @ = 1 are more accurate than those
with @ = 0.85 as compared to the Navier-Stokes solutions. From the derivation of
w given in Section 4.1.2, it is clear that there is no theoretical reason for requiring a
safety factor. The necessity of a safety factor in the space-marching method is only
to make the algorithm stable, and is not inherent with the parabolized equations.
As a final comparison, we note that the left hand side operator of the tiine-
iterative procedure is more diagonally dominant than that of the space-marching
algorithm. In fact, vanishing elements appear on the diagonal of the left hand
side matrix in the space-marching algorithm due to the absence of the identity

matrix [ in Eq. (4.19). As a consequence, pivoting strategies are required to solve

- PO T e S R T L T
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Eq. (4.19). Contrarily, the diagonal elements are always non-zero for the time-

iterative aléorithm. and pivoting is not required. Our experience shows that a 30%

“saving in computational time per iteration is gained by the solution of a block tri-

diagonal matrix without pivoting. Again, this difference would help to make the

time-iterative PNS procedure more economically competitive with the non-iterative

procedure.

4.2.6 Stabjlity Analysis of Time-Iterative PNS Algorithms

To validate the time-iterative algorithm developed above, the Fourier stability

analysis of Eq. (4.14) is given as follows. The amplification matrix of the variable

é is defined -
Q.ﬂ+l = GQ.H

From a von Neumann analysis, G can be found to be

L;G = I
where the matrix L, is,
At At ) At
Li=1-4AtD+ ZEA:' + zKr-;Bsmw,, + 2W(R!BUI + RzBuz)(l —cosw,,)

and w, is the n direction wavenumber. Figure 46 shows maximum eigenvalues of
the G matrix versus wavenumber for typical supersonic and subsonic conditions.
The results show that Eq. (4.14) is unconditionally stable, and that rapid conver-
gence can be expected for high values of CFL. The stability results given ahove

are for the pressure gradient splitting method. Those of characteristic splitting are

qualitatively the same.
4.2.6 Results and Discussion

We have discussed two parabolized procedures so far. Now, the question to ask

i8 which method is better in terms of both computational efficiency and solution
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Maximum eigenvalue of G

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.9

Wavenumber w,

Figure 46. Stability results for the time-iterative PNS scheme with pressure
gradient splitting
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accuracy? To answer this question, a series of numerical computations were done
and their solutions were compared to those from the TLNS algorithms provided
in Chapter 3. Before showing the results of these comparisons, we note here that
all PNS algorithms given above require boundary conditions in the cross-stream
direction. The procedures at the wall and the centerline discussed in Section 3.2.1

are equally applicable to PNS algorithms. At the starting plane, the flow variable

Q must be given.

The test problem for the comparisons following is again the flow through the
high expansion ratio nozzle with an area ratio of 272 : 1. The same flow conditions
and properties described in Section 3.6 were used, including the inlet conditions, the
ratio of specific heats, and the 75 x 50 grid syatem (for the non-iterative algorithm,

a more refined 300 x 50 grid was used). The Reynolds number was taken to be

1.4 x 10* based on the throat radius for all calculations presented. All Aowfield

results presented are for laminar calculations.

The numerical efficiency of the time-iterative PNS procedure is shown in Fig. 47
for representative conditions. This figure shows the convergence at a specific ¢ sta-
tion by plotting the L-2 norm of ué/é associated with the four equations (con-
tinuity, momentum, and energy equations) as a function of the iteration number.
Both inviscid and viscous results are shown on Fig. 47. A CFL numbher of 10° was
chosen for both cases. The convergence clearly indicates that machine accuracy
was reached in less than 10 iterations and the inviscid case converges slightly faster
than the viscous case. Acceptable convergence (corresponding to a reduction of
six order of magnitude in the L-2 norm) is obtained in 4 iterations. As we can see
from Eq. (4.14), when the time step At goes to infinity, the time-iterative algorithm
approaches Newton's method. Hence, the quadratic convergence shown in Fig. 47

is o be expected. This rapid convergence has been generally observed for all PNS
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calculations to date. The convergene~ shown in Fig. 47 is based upon pressure

gradient splitting, but is also representative for characteristic splitting algorithm.

The solu*.ons of PNS algorithms are compared to those from thin-layer Navier-
Stokes calculations in Fig. 48. The upper plot s .c'v¢ the Mach number contours
by using the pressure gradient splitting PNS method, the lower plot shows similar
results for the TLNS solutions. This comparison indicates that the PNS procedure
gives solutions that are almost identical to those of the TLNS equations. As will

be shown later, the characteristic splitting also gives results that are even closer to

the TLNS solutions.

To further compare the flowfield details, the pressure distribution and stream-
wise velocity ;.rofiles at the exit plane are plotted in Fig. 49 and Fig. 50. Each figure

compares four different vrocedures. They are the TLNS m::thod, the pressure gra-
dient splitting PNS with & = 1.0 and 3 = 0.85, and the characteristic splitting
PNS. The pressure profiles in Fig. 49 show that the computed pressure distribution
by pressure gradient splitting without safety factor is almost identical to that by
characteristic splitting, except the former slightly overshoots the pressure at the
centerline. Both methods agree very well with the TLNS results and the charac-
teristics splitting method is slightly better than the pressure gradient PNS. Figure
49 also shows that the use of a safety factor of 0.85 in pressure gradient splitting
deteriorates the solution accuracy. As can be seen, the use of the safety factor
causes about a 25% undershoot in the pressure at the centerline and about a 57
overshoot at the wall.

Similar comparisons associated with the velocity profiles shown in Fig. 50 show
that all four procedures predict fairly close velocity distributions. Correct values of

velucity together with incorrect values of static pressure indicate tha! the entropy

(stagnation pressure) is not well conserved, a phenomenon {requently encountered
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in numerical schemes.

The effect of setting & = 0.85 is also indicated in Fig. 51, which n
number contours for this case. Comparison of this figure with the 1.... _utcrions
given in Fig. 48 shows that the over-suppression of the streamwise pressure gradient

by using safety factor other than one alters the flowfield structure dramatically.

Further comparisons are shown in Fig. 52 and Fig. 53, where the wall pressure
distributions and the locations of the sonic line along the axial direction are plotted.
Figure 52 shows that all four methods give almost identical wall pressure distribu-
tions but again the case with the safety factor included is not quite as accurate.
The sonic line locations shown in Fig. 53 are obtained by interpolation between grid
points. This figure shows that the three PNS algorithms give basically the same
subsonic layer thickness (the distance from the wall to the sonic point). Although,
the & = 0.85 case underpredicts the thickness of subsonic iayer by about 1%, which
is the worst among the three algorithms. These results indicate that the PNS ap-
proximation gives solutions that are acceptable in accuracy for the high Reynolds

number flow without separation, as in current test problem.

The discussion above demonstrates that for better solution accuracy, t..e safety
(actor should not be less than one (which is easily done by using the time-iterative
algorithm). Furthermore, the characteristic splitting PNS procedure gives solutions
that are as accurate as, or even more accurate than (as in current test problem) the

traditional pressure gradient splitting PNS method.

So far, all results shown for supersonic viscous calculations including both from
TLNS and PNS algorithms are obtained by using second order differencing in the ¢
direction. To demonstrate the difference in accuracy between first order and second

order accurate upwind differencing in two dimensions, the first-order PNS results

of the same test problem (flows through the high expansion nozzle) are shown in




Figure 51. Mach number contours computed by PNS algorithm based on pressure
gradient splitting and using a safety factor of 0.85
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Fig. 54. Comparisons of Fig. 48 and Fig. 54 show that the oblique shock wave [rom
the first-order solutions is not as sharp as that from second-order solutions due to
the smearing eflect resulting from the inherent second order artificial dissipation of

the first-order upwind differencing. Therefore, for better solution accuracy, second

order upwind differencing should always be used.
4.3 Global PN

For fiows with strong upstream influences such as separated flows, the marching
type PNS procedure as discussed in Section 4.2 can lead to serious errors in the
numerical solution due to the suppression of the streamwise ellipticity. To allow the
upstream propagation of acoustic wave inside the subsonic layer, thus preserving
the streamwise elliptic behavior, the 6[77‘/86 term in Eq. (4.2) must be included;
thus the Navier-Stokes procedures discussed in Chapter 3 must be used instead of
the parabolized algorithms provided in this chapter.

In the traditional PNS approach, numerous attempts have been made to take
into account the upstream influences by identifying global pressure iterations. The
basic idea of global pressure iterations is to update the pressure field by providing
some sort of stable differencing scheme for the the omitted (1 -w)dp/3€ term. This
is usually done by evaluating (1 — w)dp/9¢€ from a forward difference and using the
updated value of pressures at downstream locations, as suggested in the works of
Rakich [44], and Lin and Rubin [45]. Davis and co-workers [46] and Barnett and
Davis [47] also developed a global pressure iteration procedure by appending a
fictitious unsteady term, dp/dr, on the steady state equation, then updating the
pressure field by a two-step alternating direction explicit (ADE) procedure. These

global pressure iterations are surnmarized by Thompson and Anderson |18].

In the present study, by obtaining the PNS procedure from the TLNS equa-

tions, the procedure for incorporating a global pressure iteration procedure becomes
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Figure 54. Mach number contours computed by PNS algorithm based on pressure
gradient splitting, first-order upwind results.
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obvious. We need only return to the complete TLNS equations (Eq. (4.2)). There-
fore, all three approximate factorization algorithms provided in Chapter 3 can be
interpreted as global pressure iteration procedures.

The TLNS algorithms (or so-called global pressure iteration procedures in the
traditional PNS approach) developed in this study are based upon the approximate
factorization of the TLNS equations, and therefore have both physical and mathe-
matical connections to the equations of motions, while the global pressure iteration
algorithms are concerned wit!: arbitrary iterative processes for the pressure gradi-
ent (1 — w)dp/3€, which are unrelated to the physical equations, as a consequence,
some sort of relaxation scheme is required. This suggests that the mathematically
and physically well-behaved TLNS algorithms based on approximate (actorization
can be used instead of global pressure iteration procedures.

As an example of the interpretation of global pressure iterations based on TLNS
algorithms, the following procedure is suggested:

1. Obtain an initial PNS solution by marching from upstream to downstream

using Eq. (4.4).

2. Solve the discretized equation of the PNS-ADT algorithm, Eq. (3.40), by the

following two equations,

E ] a3 3 3 .
_ t - + il - - - . - - ‘I
{I-AatD+ At[aeA, + 35,8 an(RxanBul + Rzan B.»)|}AQ atR
‘ (4.25)
(I - 61D+ A2 A7)A0 = (1 - AtD)AG (1.26)

9¢

3. Update the dependent variable é, according to,

Q'n+l - éﬂ +AQ.

until the converged steady state is reached.
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The first step is used to obtain a good initial condition for the TLNS calculations.
The first equation in the second step, Eq. (4.25), is equivalent to the time-iterative
PNS algorithm and the second equation, Eq. (4.26), is augmented in order to provide
a mechanism to allow upstream propagation to take place inside the subsonic layer.
In the supersonic region, A; is identically zero and the left hand side operator in
Eq. (4.26) reduces to an identity matrix; hence, only Eq. (4.25) has to be solved.
Figure 55 shows typical convergence of the TLNS procedure mentioned above
when applied to the high-expansion ratio nozzle calculation given in Section 4.2.6.

It requires only 110 iterations to reach machine accuracy; acceptable convergence

is achieved in 25 iterations.
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Numler of iterations

Figure 55. Convergence of global pressure iteration for the TLNS equations
for 272:1 contoured nozzle




CHAPTER E

THE APPLICATION OF TIME-ITERATIVE SCHEMES TO
- ) VISCOUS SWIRLING NOZZLE FLOWS

As examples of the application of the Nz- ier-Stokes algorithms, swir'ing vis-
cous flows in transonic and supersonic propulsion nozzles are investigated in this
char‘er. The central-differenced ADI and the flux-vector splitting algorithms dis-
cusned in Chapter 3 are utilized to solve the thin-layer Navier-Stokes equations for
axisymmetric two-dimensional flows wit' swirl. The effects of swirl on viscous flows
are iden‘ified for nozzles with mild to hizh expansion ratios. Both flowfield details

and the irtegral nozzle performance are compared to previously publ sied inviscid

calculations.
6.1 Governing Equations and Numerical Algorithms

The swirling nozzle flow inside an axisymmetric nozzle can be described by the

three-dimensional Navier-Stokes equations. If we assu.ne the flow is axisymmetric.

all circumferential derivatives varish and the system of equations reduces to two

dimensions. The resulting Navier-Stokes equations in vector form can be written as

a—Q+a—E—+§£--H+?E”+aF”
3t  dr 3y or dy

-——
ey}
-

—

where z and y are the axial and radial coordinates, respectively. The flow variable

Q in Eq. (5.1) is defined as

Q = y(p, pu,pv,pw,e)”

e g e R R e R e TR T W S T T AT T
T e e RS R T 2 AT R T T W i W S S A A i
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in which u, v, and w represent axial, radial, and circumferential velocity compo-

nents. The inviscid Aux vectors E and F are given by

pu pv
pul +p puv
E=y| puw |, F=yl|pv?+p
puwW pvw
(e + p)u (e + p)v

Vircous terms are included in flux vectors E, and F,,

[ 0
. ]

w3 38'“)
Ev=y g+ 30)
“a
)
g2 + 85) + wul3 827 189 + e + 87
- 0 :
s(§ + %)
o=y u(3§ - 352)
:%‘37‘9 8 aT
L uu(Be+ 58 +uv($fe - 358 +uwde + kYT
The source vector H is defined by
- 0 ,
-3 & (wv)
He | et dit hug - bk
—P"w—#% —w%‘é
—53;(“"‘”) 35%(“"2) - 2uwg—';’ - wzgl;J

The system of equations, Eq. (5.1), is similar to the Navier-Stokes equations in
axisymmetric two dimensions (Eq. (3.2)) except the tangential momentum equation
is included in Eq. (5.1) to take into account the variation of the cirenumferential
velocity in axial and radial directions.

Following similar procedures given in Section 3.1, the thin-layer ver<ion of
Eq. (5.1) in general coordinate system for two-dimensional swirling flows can be

written as

9Q , ok ar_]-HaFu

(5.2)

ot 9¢ M dn
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where the flow variable and the flux vectors are

-y
Q= j(p,pu.pv,pw.e)r,

pU pvV
.y pul + E:p oy puV + nep
E=7 pvU + &yp | F=}- pvV +nyp |,
pwlU pwV
(e + p)U (e +p)V
and
.~ 0 -
al-g—%-kaz%
ﬁu=§ ag%;-‘+aag—:”
J as 2%
8an
2 - w, 17}
oy + 2goe gt o oagea § 4 magea 2l g,

In which a; through a4 follow the same definitions described in Chapter 3 and as

is
as = p(nl +n?).

The source vector H for swirling flows is simply H = H/J. Again, il 4 is set equal
to zero and 3F,/dn is omitted, Eq. (5.2) reduces to the Euler equations which
describe inviscid swirling flows.

Equation (5.2) takes the same form as Eq. (3.9) except for the additional en-
tries arising from the tangential momentum equation. Therefore, all numerical
algorithms discussed in Chapter 3 and Chapter 4 are presumably applicable for
the present governing equations. According to the nature of the flow, different nu-
merical algorithins will be employed to solve transonic and supersonic flows. For
transonic flows, we choose the implicit ADI procedure instead of MacCormack's
explicit algorithm which was used by previous workers [32-34]. The details of this

implicit ADI scheme have been discussed in Section 3.2 and will not be repeated

here.
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As mentioned earlier, the implicit ADI procedure becomes ineflicient and some-
times even leads to numerical instability if a large portion of the flowfield is super-
sonic For this viscous supersonic swirling flow, the hybrid upwind-central differ-
encing algorithms described in Section 3.4 can be chosen. For swirling flows where
upstream influence is not significant, the parabolized procedures discussed in Chap-
ter 4 are also applicable. The major difference in numerical procedures between the
present swizling flow solvers and the non-swirling axisymmetric solvers discussed in
Chapter 3 is that the block size of the left hand side matrix for the present case is
5 x 5 while that for the non-swirling case is 4 x 4. Therefore, numerical procedures

for the swirling flows are more time-consuming than those for the non-swirling cases.
5.2 Boundary Conditions

Previously defined boundary procedures can be easily extended to swirling flow
calculations. For supersonic flows in the meridian plane at the inlet, the flow variable
Q is completely specified. For subsonic inflows at the inlet, the stagnation tempera-
ture, the stagnation pressure, the meridian plane streamline angle ¢ = tan~'{v, u),
and the swirl angle ¢ = tan~'(w/u) are specified, the remaining one unknown
comes from the characteristic equation corresponding to the single negative eigen-
value. The swirl angle profile at the inlet is assumed to be one of constant angle,
free vortex, or forced vortex, which are the same as in Ref. [34] except that the swirl
angle asymptotically approaches zero at the wall {or all viscous caiculations.

At the wall, four characteristic equations and the tangency condition are em-
posed for inviscid calculations, while no-slip conditions together with zero normal

pressure gradient and isothermal or adiabatic wall conditions are used. Symmet-

rical conditions are applied at the centerline. At the exit, either extrapolation or

fixed back pressure conditions can be chosen as described in Chapter 3.
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To give assessments of the nozzle performance, several integral parameters are
defined as the following. These include the discharge coefficient Cp, the vacuum
stream thrust efficiency n,,, the specific impulse efficiency ns;, and the nozzle

fiowfield as a function of the inlet swirl number S;,

ﬁ v' - -
Cp=— =2 / puydy/(vae — y2) (0 4" )ia
Mid v

€

Voo
Moy = 2 / (p+ pu®)ydy/(y2, - y2.)(Pe + pev?)a

re

nVl

Vei Vi
Si = / puwy’dy/yu / pulydy.
1

Vei
The subscriptst, t, e, ¢, w, and ¢1d denote inlet, throat, exit, centerline or centerbody,

en

wall, and ideal conditions, respectively. The quantity m is the mass flow rate. The
ideal conditions are obtained from one-dimensional isentropic values at the same
stagnation conditions as the actual low. The discharge coefficient can be interpreted
as a measure of the loss in mass flow rate due to two-dimensionality and the swirl.
The swirl number is defined as the ratio of the axial lux of flow angular momentum
divided by the axial flux of axial momentum and is a direct measure of the level of

swirl at the nozzle inlet.
5.3 Nozzle Flowfleld Predictions

To place present viscous swirling calculations in perspective with previously
published inviscid results, the implicit ADI scheme is applied to calculate transonic
flows through a convergent-divergent nozzle, an annular plug nozzle and a converg-
ing nozzle, which all have been investigated by Dutton {34]. As an example of
predominantly supersonic flowfield, the viscous swirling flow through the 272 : 1
contoured nozzle previously given is calculated by using the upwind-central differ-

encing algorithms, Only laminar results are shown for all three transonic case:, and

both laminar and turbulent results are presented for the contoured nozzle.
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5.3.1 Convergent-Divergent Nozzle

The 35° — 18.5° convergent-diverging nozzle calculated by Dutton is analyzed
in the firat series of computations. The geometry of this nozzle is shown in Fig. 56
and Fig. 57 for inviscid and viscous computations, respectively. The 63 x 30 equally
spaced grid in both the axial and radial directions as shown in Fig. 56 is for inviscid
calculations, while the 63 x 50 grid with strong clustering near the wall as shown

in Fig. 57 is for viscous czlculations.

The convergence rates of inviscid and viscous cases are shown in Fig. 58 and
Fig. 59, respectively. For inviscid computations, as shown in Fig. 58, the L-2 norm
of Aé/é reduces 9 orders of magnitude in 250 iterations for the zero-swirl case,
which is typical for a ADI scheme. Also, the presence of swirl is seen to slow down
the convergence rate substantially. The convergence rate for the viscous calculation
is dominated by the boundary layer near the wall, hence it is in general slower than
that of inviscid calculations as is seen in Fig. 59 (for 300 iterations, the L-2 norm
drops only four orders of magnitude). These results show that the convergence for

viscous calculations is insensitive to swirl.

Calculations of the flow in the converging-divergent nozzle have been completed
for a number of nozzle Reynolds number conditions including the inviscid case. Fig-
ures 60 and 61 compare Mach number contours for the no-swirl and the swirl cases
for the inviscid and one of the low Reynolds number viscous calculations, respec-
tively. The inviscid results are in good agreement with Dutton’s calculations. The
viscous case is for a Reynolds number of 7000 based on the inlet radius and inflow
properties. These viscous Mach number contours indicate that the introduction of
swir] primarily affects the axial velocity near the centerline as in the inviscid case,

although there are some changes heginning to occur near the wall in the diverging

section.
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The integral nozzle performance in the presence of viscosity is plotted in Fig. 62
against the'swirl number. This figure shows the discharge coefficient (Cp) and the
vacuum stream thrust efficiency 4 (n,,) as a function of swirl numbers for free
vortex, forced vortex, and constant angle inlet awirl profiles. The predicted Cp and
Nve values are about 2% less than those of inviscid calculations of Dutton at the
Reynclds number of 7000. At a given swirl number, the reduction in Cp and n,, is
most prominent for the free vortex case because a relatively larger swirl .gle must
be specified near the centerline in order to achieve the same swirl number. This
larger swirl angle sresults in a larger reduction in the mass flow rate. A similar
phenomenon was also observed in Dutton’s inviscid calculations {34]. The specific
impulse efficiency (ns) for the viscous case is essentially constant and is similar to
Dutton’s inviscid results, except the value is 0.965 instead of 0.971.

The effects of Reynolds numbers are shown in Fig. 63. The computed Cp and
nv, values as functions of the Reynolds number are plotted for S, = G and S; =
0.361. A constant angle swirl profile was used for these computations. Asymptotic
values obtained from present inviscid calculations and from Dutton’s calculations
are given on the right. As the Reynolds number increases, Cp and n,, approach
the values of inviscid calculations. These results show the degree of error incurred

by making the inviscid assumption for high Reynolds number flows.

5.3.2 Convergent Nozzle and Plug Nozzle

Viscous calculations ar: proceeded with the elliptically contoured converging
nozzle and the annular plug nozzle. A small portion of the wall has been appended
to the converging nozzle after the throat, such that the flow at the downstream
boundary is predominantly supersonic in the streamwise direction. This allows

easier implementation of the downstream boundary conditions and does not alter

the flowfield before the throat. The resulting Mach numuver contours are shown in
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Fig. 64 for S, = 0 and S, = 0.43. Corresponding performance curves are plotted in
Fig. 85. THe predicted Cp and n,, values are about 1% less than those of Dutton's
inviscid calculations over the entire range of inlet swirl numbers for a Reynolds
number of 1.1 x 10*. The values of ng; are about 0.7% less than those of inviscid
results.

‘ The results of the annular nozzle are shown in Fig. 66 for viscous calculations
for a Revnolds number of 10%. The flowfield of the high swirl case S, = 1.708 is very
different from that of the zero swirl case near the inlet region due to the combined
effect of boundary layer and the inlet swirling. The total Mach number contours
for this high!y swirled viscous flow differ from Dutton’'s inviscid results due to the
viscous effect un the circumferential velocity. This discrepancy demonstrates the
importance cf v scous anclyeis for jow Reynolds number flows. About 4% of the
reduction in C'p and n,, compared to \he inviscid case can be observed in Fig. 67.

Again, the redu:tion in specific impulse efficiency tor viscous calculations is 'ess

than that for the inviscid results.

5.3.3 High Lxpansion Nowvzle

Ac indicatea earlier, the effect of viscosity on high expansion ratio nozzles with
swirl are considerably greater than tnat on C-D nozzles. Supersonic flows through
a contoured nozzle with an expansion ratio of 272 : 1 as thal given in Chapter 3
were computed by using the PNS-AD! algorithm (Eq. (3.40)). A 75 x 50 yrid as
shown in Fig. 30 was used and the Reynolds number based on inlet (throat) radius
and inflow conditions was 1.4 < 10% for both laminar and turbulent ca'culations.
The convergence rates for zero-swirl and tvpical swirling case are shown in Fig. 65.

T'le resnlts show that =wirling has minor effects on the convergence rate {or the

PNS-ADI algorithrn.
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Figure 64. Viscous Mach number contours for convergent nozzle
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s| = 1.706

Figure 66. Viscous Mach number contour for annular nozzle
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The Mach number contours from laminar results for S, = 0 and S, = 0.521
are shown in Fig. 69. The presence of swirl increases the axial velority near the
centerline and thus results in a shifting of iso-Mach lines and the weak oblique
shock. The resulting boundary layers are thicker in these calculations than those
in C-D nozzles even for a Reynolds number as high as 1.4 x 10%. A much thicker
boundary layer can be expected for lower Reynolds number flows where inviscid
assumptions appear to be inadequate.

Turbulent results by using Baldwin and Lomax model [12] are shown in Fig. 70
based on the same Reynolds number and two inlet swirl numbers of 0 and 0.55.
Comparing with Fig. 69, relatively thicker boundary layer is seen. Figure 71 plots
Cp and n,, as functions of S, for both laminar and turbulent results. Large reduc-
tion in Cp and n,, for both laminar and turbulent results can be observed. For a
highly swirled flow (S, = 2.5), Cp and n,, are about 20% less than those of the
zero-swirl flow, even for a moderate swirl, a 10% reduction in Cp and n,, mnay
occur. Slightly less reduction in Cp and n,, for turbulent results are noted. These
results demonstrate the effects of swirl on high exparsion ratio nozzles are much

more prominent than those on mild C-D nozzles.
6.3.4 Verification of Global Conservation

To validate the numerical algorithms, the mass flow rate al each axial location
is calculated in the analysis codes. This provides a back-to-back check for global
mass conservation. For the transonic results presented above, the maximuin rass
error has been maintained below 1%. For the more difficult high expansion nozzle
case, which has the largest mass error to date, the maximum deviation is ahout

0.8%. This again verifies the necessity of fully conservative form for the internal

flow calculations.
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CHAPTER 6

THREE-DIMENSIONAL NOZZLE FLOWS

The hybrid upwind-central algorithms proposed in Chapter 2 are extended
to three-dimensional viscous supersonic calculations in this chapter. The three-
dimensional thin-layer Navier-Stokes equations are simplified by neglecting the
streamwise diffusion while retaining all viscous terms on the cross-stream plane.
Both the Parabolized Navier-Stokes procedure and the time-iterative TLNS algo-
rithm are studied for three-dimensional nozzle flowfield predictions. These algo-
rithms are formulated based on the DDADI splitting for thé streamwise derivative
and central differencing in cross-plane derivatives. Supersonic flows through a three-

dimensional nozzle with a rectangular cross section are computed for demonstration.

6.1 Governing Equations’

The three-dimensional Navier-Stokes equations in a Cartesian coordinate sys-

tem can be written in vector notation as

9Q d9E 9F 4G _9E, OIF, G,

== 4+ — + = = 6.
at 61+8y+az 6:t+8y+az (6:1)

where the dependent variable Q is

Q = (p,pu,pv,pw,e)T.

e B e P
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The inviscid flux vectors E, F, and G are
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) [ pu pv
pu2 +p puv
E = puvY , F=j{p*+p]|,
puw pyvw
L (e + p)u (e+p)v
r pw
puw
G = pvw
pwl +p
l.(e + plw

Viscous terms are included in the flux vectors E,, F,, and G, as

r 0
g -t + 5
E, = w(ge+5Y)
w(52 + 52)
(g - 2B+ 30 4 uv(BE+ 3) +uw(5E + 1) + k5T ]
8 0 .1
w(3E + §)
F, = $n3 - 2u(8e+ 52
w(§E +52)
(32 + 22) + ol 480 - 282 4 82)) 4 (B + 42) + YL
: 0 1
(g + 5%)
Gu= ”(%4-'8—‘5)
$uge - I+ §Y)
(pu(82 + 82) +uv(§e+ 52) +uw(3ge - (5 + 3+ 45T

To facilitate computations on arbitrary grids, the Cartesian coordinates z, y,

and z are transformed to general coordinates £, n, and ¢ according to

£ = f(z’ Y, 2)
n =n(z,y,2) (6.2)
¢ =¢(z,vr2).
By using the transformation defined by Eq. (6.2), Eq. (6.1) can be transformed to
0Q 9L 8F oG _dE, 9F, 4G,
X = = = . 6.
o T3 "o T T8 Tam T 5 (6.3)
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The depeadent variable now becomes Q, which is defined by

- 1
Q = (P ou,pv, 0w, e)T
where J is the Jacobian of the coordinate transformation and can be expressed as

J70 = Zeyaz + Toyezn + Ta¥2e — TeYe2n ~ TnYeZ, — TYn2e.

The inviscid flux vectors now become
r pU 14

pulU + E:p puV + n.p
evU + &up |, pvV +nyp |,
pwl + £,p pwV + n.p

L (e+p)U (e + p)V

_ W

puW + ¢.p

pvW - ¢ p

pwW + ¢pp

L (e + p)W

in which the contravariant velocities U, V, and W in threc dimensions are

U=¢u+ &u+ Euw

3
i
<
e
Il
-

Q)
"
L )

Y =nzu+ v+ 0w
W=q¢cu+gu+qw.

The transformed viscous flux vectors are defined by
E, = (&E, + £,F, + £.G,)/J

ﬁ‘v = (’T:Ev + ’?va + ')tcu)/J
G-'u = ((zEu 4 gyFu -+ (zcu)/\]
As mentioned in Chapter 3, the streamwise diffusion can be neglected without
losing accuracy even for a fairly low Reynolds number. For three-dimensional lows

inside a nozzle, the viscous terms in n and ¢ directions cannot be neglected. This

results in the TLNS equations in three dimensions as
) . 9F ;  OF G,
Jo (98 OF 3G _ 9 . i’-‘-. (6.4)
an = d¢ on d¢

- +
at d¢
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The viscous terms on the right hand side can be further rearranged to

- aF, 4G, AF, 9F, 9G, G,
+ = + + +

dn d¢ dn  9n d¢ ¢
where I-‘,, and é, contain pure second order derivatives with respect to n and ¢,

respectively. All cross derivatives are included in F.} and é,,. The viscous flux

vector F, can be expressed as

( 0 ]
3 a3 -]
015—:;' +02ﬁ+035%

’ a3 -] a
_ azé—:+a43—:’;+a53‘—:

F, = du v dw
n dy cw
e L aizagfu’ . ag—agdu ag—ag dw?
@z, : t 7, a1 T ‘E'n':' T an
Uy Quw v w
_ +02';'n-+03 ED +a§ an J
with
~k(nl+n)+37) 4 n.n,
= e ar=5(3nz+nj+m), e =fige,
— — 2 4 ? _ NyNs
as = 4§ 140e, ag = G(nl+ 30l +n]),  as= 5,

ag = ‘}('73 + '7,2, + ?‘,'IZ)'
The vector C.?; can be obtained by replacing all n’s in the expression of I-.‘,, with ¢’s.

The vectors I, and G are

0 1
'n%‘,‘ +'n% + 73‘;3—';’
) ‘74?§+‘75g—§+’70‘3§
F, = Y15 T sa 95

70%i+m9_“1+u‘ “ﬂi.}. 2=1o “‘3.__‘”1

v Ju dw Qu
+y2u G + V45 +'73uaa< + 1wy
v

s J

+‘mv%‘{£ + yaw

and
0 ]
u el 2
NG5S+ Vg + 115y
3 Aw
Yage t sy 8 G,
9u du Jw
G'I = T35, + 76 &y + Y9 an i
mo 2t g LTI dul 4 3= 0vD | T =qu Jwl
van s 2 an 2 an 2 d
u a3 3w
+yaudE +rE + yu g+ yaw g
du

dw . av
L TV, * el g, ]

R e ==

e T i T Y e e e e
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with

k [ BY ] (Y]
, Yo = TRRefetRaletBefel oy = E(Sn2ge + 1ygy + 04Ga),

T2 = 5('“(! - %":(y)’ Y3 = 5(’7:(: - %'l:s’:),
Y4 = 5("85'11 - %')vf:)n Y5 = 5(":(: + %ﬂy(y + NG,
o = 5(""‘!’ - %”vﬁ)' Y7 = 5(nega - %'7:(:)'

V8 = 4(Nyss — 3048y)s Yo = B(nzse + MySy + 3NaCs).

With the substitution of the new expressions of Viscous terms, Eq. (6.4) be-

comes . _
8Q O9E 9F oG 4aF, aF, 4G, oG,
9 986 9F 9 _ . 6.5
ot et T et T tan T T o (6.5)
0.2 Three-Dimensional Supersonic Algorjthms

Numerical algorithms for the solution of Eq. (6.5) can be formulated in a num-
ber of ways. Based upon the results from Chapter 3, the algorithm for three-
dimensional flows will be formulated according to flux-vector splitting in the stream-
wise direction and central-differencing in cross-stream directions. Before discussing
the details of numerical algorithms for the vector governing equations, the Fourier

stability analysis for a scalar modeled equation is studied.

6.2.1 Stability Analysis of the Scalar Equation

The three-dimensional Burger's equation,

du +0u _Ou du  Au d%u  d%u
—+a ——+a —+b—+c—

= y{ —= + — 6.6
at or oz dy Jdz “(8y7 d22 (6.6)

is chosen as the modeled equation. This modeled equation implies only the streain-
wise (z) direction is flux-vector split, while the remaining derivatives on the cross
plane (y and z directions) are to be evaluated according to central differences.

For simplicity, we restrict only to first-order upwind diflerencing for the dis-

cussion of stability analysis although the numerical computations shown later are
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based on second-order upwind differencing. By using the line Gauss-Seidel version
for the DDADI method, the discretized equation for Eq. (6.6) can be expressed as

a forward marching,

3 a? ] a?
d t{b— — —— — -y —)}Au® = —-Atr" 6.7
| +A(bay uayz)+At(caz ”a:?” u r (6.7)
and a backward marching,
] a? a a? .
—_— y—— —_— -y — = —~Atr’, .
|d + At(bay “ay=) + At(caz b3 )]Au Atr (6.8)

In Eqs. (6.7) and (6.8), the right hand side residuals r" and r° are

Up e — Ul du du ou %u 9%
N = + "Jok I-l,),k -2 b__ + — - + in
’ “ Az *la oz * dy ‘oz ”(ay"’ azw)'
and
“":11, kT Y5k + 0Ou du du 2%u 9J%u
* — a4~ ' WJe WJ hutind b_ - . it hudiied o'
r N Az *a dz + dy + Caz “(83/7 * az? )

and the quantity d is the diagonal element defined by

At
d—l"rz-;(a -a )

Equations (6.7) and (6.8) are based on a straightforward extension of the two-
dimensional algorithm. This implies that the y and z derivatives (from both inviscid
and viscous terms) are treated implicitly. Consequently, the resulting left hand side
matrices of Eqs. (6.7) and (6.8) are very expansive to solve due to their high hand-
width structure.

A more practical way to solve these two equations is to factorize the left hand
side operators of Egs. (6.7) and (6.8). This results in the factored forward marching,
2 2

a3 ]
)id~Yd + At(ca—z - p==)]Au’ = - A" (6.9)

a a
d g _
d + At(bay m 37

ay?
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and the factored backward marching,
) 8 a2 1] a9?
d tlb— — y—- d-l —_— o ] —— = ~Alr°. 6.10
|4+ 8t 5= - uzg)ld ! ld+ At(es - wg)lau = ~tr (6.10)

The solutions of these factored equations require alternating sweeps in y and
z directions, each sweep involves only consecutive solutions of a scalar tri-diagonal
matrix for the present scalar modeled equation. In the vector governing equations of
interest, the factored algorithm requires the solutions of a block tri-diagonal matrix

with a block size of 5 x 5.

The amplification factor for the unfactored forward marching Eq. (6.7) is then

e .

9. =

ak
it
QS

Ce

where, D; and C_ are

D, =1~o0_(cosws + isinw;)

and
Ci=1+0f(1~cosw; + (sinw,;) — 0] + 10, sinw, + 10, sinw,

+ 20,(1 — coswy) + 2uv4(1 - cosw,).

and that for the unfactored backward marching Eq. (6.8) is

.. un+l _ D;-
u = u c:*
where
D) =1+ 0] (cosw; + 1sinw,)
and

C., =1+ of + 0. (cosw; + 1s8inw, ~ 1) + 1o, 8inw, +10,sinw,

+ 2v, (1 = coswy) + 2u4(1 — coswy).

The parameters 0], 07, 0,, and 0, are CFL numbers defined by

ot = at At o = a” At

7 Ar T Ar
bAt cAt

Uy = Oy =

Az

Ay’
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and v, and v, are von Neumann numbers defined by

_ uAt _ pat
by = "A'—;i, Vg = Z?’

The wavenumbers in z, y, and z directions are represented by w,, w,, and w,,

respectively. The overall amplification factor for the unfactored method is then

¢ o

Ju = 949y -

The amplification factors for the factored forward and backward marching are

._D.+Cy
91 = C:+Cy
and
._ Dy +Cy
9 = C;'+C/'

respectively. The quantity C; is due to the approximate factorization and is
Cr=(1+07f -0 )|ioysinwy + 2vy(1 — cosw,)|[fossinw, + 2u4(1 ~ cosw,)].

The overall amplification factor for the factored method is g; = g;9;".

Similar to the discussion in Section 3.3.5, the stability results are presented for

two special cases, they are

1. subsonic:o} = -0 =0, =0, =vy =1, =CFL

2. supersonicio} =0, =0, =v, =v, =CFL, o7 =0.
Here, the first case simulates the subsonic flow, while the second case is analogous
to the svpersonic flow.

The results for the first case with a CFL number of 10 are shown in Fig. 72
and Fig. 73 for the unfactored and factored schemes, respectively. These two figures
plot the amplification {actors versus the wavenumber wy and w; for three typical
z-direction wavenumbers, w, = 0, w; = 7/2, and w; = 7. As can be seen, the

approximate factorization of the factored scheme results in a much higher ampli-

fication factor near the high wavenumber region as compared to the unfactored
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case. Therefore, the factored scheme is expected to give much siower convergence
than the unfactored scheme. The stability results for the second case are shown in
Fig. 74 and Fig. 75. Similar effects of approximate {actorization as in the first case
are clearly shown.

The results above indicate that both the factor and unfactored three-
dimensional DDADI schemes are unconditionally stable for the three-dimensional
Burger’s equation. Furthermore, the necessary approximate factorization for a prac-
tical three-dimensional DDADI algorithm results in increasing the eigenvalues near
the high wavenumber region. This implies that convergence of the three-dimensional
DDADI algorithm is inferior to that of the two-dimensional DDADI algorithm given
in Section 3.4. In fact, due to similar approximate factorization required, we ex-
pect this three-dimensional algorithm will give similar convergence as that of the

two-dimensiona! central-differenced ADI scheme.
6.2.2 Numerical Algorithms of the TLINS Fquation

Similar to the formulations of the DDADI algorithm in axisymmetric two di-

mensional flows, we first split the streamwise flux vector E according to
E=E*+E-.
This splitting can be done by using either the characteristic splitting,

E* = (MAIM;')Q  E™ = (MA7M7Y)Q,

or the pressure gradient splitting,

pU 0
) | | PeU +wéep ) g | (H—w)ep
E* == | poU +wéyp |, E- = 3 (1 —w)éyp
pwl +wé,p (1 —w)éep

(e + p)U 0
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igure 74. Stability results of 2-D Burger's equation based on unfactored scheme
for supersonic case




184

I'igure 75. Stability results of 3-D Burger's equation based on lactored scheme

for supersonic case
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The matrices M, and M;‘ are the right and the left eigenmatrices of the Jacobian

matrix A = OE'/:')‘Q. and the diagonal matrices A; and A, are

A+|A| - A:-—|A|
+ 3 § §
Ae‘_“—"“2 , A7 = T

where A¢ = diag(U,U,U,U + C¢,U - C¢) with C¢ = \// €2+ €21+ €2¢c. The pa-
rameter w of the pressure gradient splitting in three dimensions is equal to unity if
U = C¢ and must satisfy

TM}

w <
STy (- M7

il U < C¢, where M is the streamwise Mach number (M, = U/C¢).

The flux vectors E%, I, and G in Eq. (6.5) can be linearized by the truncated

local Taylor series,

(E:t)n-fl - (Et)n + AtL\Q.
F'+' = F* 4 BAQ
G =G +caQ

in which, A%, B, and C are Jacobian matrices of E=, F, and G, respectively.

Viscous terms containing pure second order derivatives can be lincarized according

to
8Fy wer _ OF, . 8 - -
aéi n+l a_é_( n (_9 = 2

where the viscous Jacobians B, and ', can be expressed in a similar way as in

Eq. (3.10) For example, B, is

X d .80Q, 9 9Q,
B =R ==Y+ Rr,— )
la” BQ) 2dn(

90 "




where the matrices R, and R; are

0 0 0 0
0 oy a; a3
R; = 0 Qg [ 7 Qs
0 [+ &} asg agc
a3 O 0 0 as

(=3 = BN o~ =

0 0 0 0 0
0 0 0 0 0
Ry=|0 0 0 0 0
0 0 0 0 0
Lao °|'2‘°u a.;a" Og;Q" asz
and the vectors Q, and Q; are
Q1 = (uv,u,v,,w,ow)T,  Qz = (e/p,u?, v w? uy)T.
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The matrix C, can be obtained by replacing all a's with §’s in the expressions of

R, and R; above. The cross-derivative viscous flux vectors in Eq. (6.5) will not be

linearized because the linearization of these vectors will results in a high band-width

left hand side matrix.

Direct application of the DDADI splitting to the £ derivative of Eq. (6.5) results

in the unfactored forward ma:ching

, d J ad a
ID +At(,’“B+ —C - ‘,_Bu
on

8( dr) - d—gcu)lAQ = —AtR

and the unfactored backward marching

J 9 9 3 -
D' +At(—B+ —C - -—B, - —C, = -Atl”
l (a” * 3 (%’B agc Y AQ Ath

where the residuals ™ and ,2° are

(B )" = (B2, 0 (BXOr—20E5 )+ (EX, L)

R" = +x 1,0.k V- 2,9.k¢

AL 2A¢
9E~ 4l oG 8F, 9F, 4G, &G

- — e e et -

§ln

ac  dy N I Jan d¢ J¢

(6.11)

(6.12)
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and

_BG WM S (B (B — B ) (B, )

B A 20€
+(aé+ LOF 3G oF, 9F 3G,
& on 9d on O O

RO

aG, 2
dc '’
The diagonal matrix D’ is
At
D'=1+(1+k/2)—'A% - A~
(1+x/2) 55! )
where the quantity « is 0 for first order and is i for second order upwind diflerencing
in £.
To avoid the solution of a high band-width matrix, the left hand side operators

of Eq. (6.11) and Eq. (6.12) must be further factorized into two one-dimensional

operators. This results in the factored forward marching,

. I a a -1 ! a a e - n
D' + At(anB 5 BN(D')'|D' + At(as_C agcu)]AQ = -AtR" (6.13)
and the factored backward marching,
, é d e L1 g , 0 a - )
—pB - — —C - — = - ) 5.
(D" + At(anB 3 B)(D') D'+ At\acC agCu)]AQ At (6.14)

Note that the corresponding Parabolized INavier-Stokes procedure can be ob-
tained by neglecting the flux vector E~ and its Jeenbian A~ in Eq. 16.13). Either
the traditional pressure gradient splitting or the characteristic-based splitting can
be chosen to form thi, three-dimensional PNS algorithm. Also, the combination of
I2q. (6.13) and Eq. (6.14) provides a three-dimensional TLNS solver.

To assess the numerical efficiency of these three-dimensional algorithms, the
supersnnic flow through a 15? expanding three-dimensional nozzle with rectangular

cross-sections was chosen far numericaj experiments. The nozzle geometry is shown

in Fig. 76 and the grids on the inlet plane and the side wall surface are shown in
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Fig.77. A constant Mach number of 1.2 and zero contravariant veloc..iesof V and W
were imposed at the inlet. The flow was assumed laminar and the Reynolds number
was taken to be 10% based on the inlet hydraulic radius and inflow properties.
The numerical experiments were done for both the three-dimensional PNS and
TLNS algorithms with approximate factorization. Typical convergence curves for
the PNS algorithm are shown in Fig. 78. As we can see, due to the additional
approximate factorization of the left hand side opera'tor, the quadratic convergence
in two-dimensional PNS procedures cannot be obtained for the three-dimeneional
PNS solver. The optimum CFL number for this . sc is 20 and this results in 300
local iterations to reach 7 orders of magnitude reduction in the L-2 norm. But
acceptable convergence (5 orders reduction in the L-2 norm) can be achieved in 40
iterations. However, this time-iterative three-dimensional PNS algorithm has been
found to be very robust and is insensitive to grid-stretching in the { direction.
The convergence for the three-dimensional TLNS procedure is shown in Fig. 79
{for a optimum CFL number of 20. The initial conditions for this calculztion were
obtained from the corresponding converged (5 orders of magnitude reduction in
the L-2 norm at each cross-plane) PNS solutions. As is seen, for 300 iterations,
the L-2 norm drops 7 orders of magnitude, which is about the same rate as a
two-dimensional central-differenced ADI solver, as we predicted from the stability

analysis given in Section 6.2.1.

0.3 Flowfield Predictions

The test case for three-dimensional flowfield predictions was the supersonic
flow through a three-dimensional nozzle with rectangular cross-sections 1s shown in
Fig. 80. The wall contour of this nozzle was chosen to be the same as that of the

272 : 1 axisymmetric contoured nozzle previously given. This nozzle has a constant

width of 30 mm. in the y direction. Due o the symmetry conditions, only one
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Figure 77 5 x 30 x 30 grid of 15° expanding 3-D nozzle for convargence test
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quadrant on the cross-section need to be calculated.

The 75 x 30 x 30 grid system with 75 in the z-direction and 30 x 30 on one
quadrant of the cross-plane is shown in Figs. 81-82. [Figure 81 shows the grid on
the side wall of the nozzle. As is seen, a strong clustering near the top is chosen to
resolve the boundary layer. Typica! grids on the cross-planes are shown in Fig. 82
for both the inlet and exit planes. This figure also shows strong stretching near the

side wall and the top due to the boundary layers in the y and z directions.

The inlet Mach number was assumed to be uniformly 1.02 and the gas prop-
erties described in Section 3.6 were imposed at the inlet. This resulted in a nozzle
Reynolds number based on the throat hydraulic radius of 1.5 x 10* and laminar

flow was assumed. The PNS procedure, Eq. (6.13), was utilized to perform the

calculation.

The flowfield results are shown at several locations indicated in Fig. 83. The
computed Mach number contours at locations A and B are shown in Fig. 84. This
figure shows quite different results from those of the axisymmetric calculations pre-
sented in previous chapters due to the three-dimensionality. Although not shown
here, these Mach number contours are more similar to corresponding planar two-
dimensional results. The wiggles of the contours near the exit and the center plane
are possibly due to insufficient grid resolution and the reflection of a weak oblique

shock at the center plane.

The streamwise velocity contours on several cross-planes (indicated in |7ig. R3
as locations C, D, E, and F) are shown in Figs. 85-87. In these figures, the growing
of the boundary layer thickness near the side wall and the top is clearly shown.
[igure~ 88-90 show the cross-stream velocity vector plots at locations C, [), £, and

I’. Secondary flow patterns and the development of vortices of the three-dimensional

boundary layer near the side wall and the top are observed. The secondary flow
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Figure 82. 30 x 30 grids on the inlet and exit cross-plane.
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D- Dsection

C - C section

Figure 85. Strcamwise velocity contours at location C and D
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patterns adjacent to the side walls as shown in Figs. 89 and 90 also explains why

the boundary layer along the side wall is thicker near the center plane.
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CHAPTER 7

SUMMARY

Implicit time-dependent achemes have been successfully applied to solve the
compressible thin-layer Navier-Stokes equations in multi-dimensions. Preliminary
applications of the implicit algorithm to the one-dimensionai Euler equations were
studied by using spatial discretizations based on both central-differencing and flux-
vector splitting upwind-differencing. Both differencing methods were shown to give
rapid convergence and accurate solutions. The Fourier stability analysis has been
studied for either differencing method. The results were shown to provide useful
information about the convergence criteria. In particular, the explicit-like CFL lim-
itation of the one-dimensional upwind scheme when using approximate Jacobians
was successfully predicted from stability analysis and later on confirmed by nu-
merical experiments. The preparatory investigations on one-dirnensional flows also
provide informative results that are extendible to multi-dimensions.

For two-dimensional calculations, the ADI scheme based on central-differencing
was formulated to solve the TLNS equations in a cylindrical coordinate system.
The effectiveness of this ADI scheme was tested by calculating typical subsonic,
transonic, and supersonic flows through nozzles. The results showed that the con-
vergence rates of subsonic and transonic cases are slow (when compared to one-
dimensional calculations) out acceptable. When the flow is predominantly super-
sonic, the ADI scheme has proven to be inefficient and sometimes even unstable.

Based upon the physical character of viscous supersonic flows, a hybrid dis-

cretization composed of central differencing in the streamwise direction and second-
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order upwinding in the cross-stream direction was proposed. Stability analyses on
a modeled’ equation were considered for the fully implicit and three approximate
factorization procedures based on this hybrid discretization scheme. The results
showed that all four algorithms are unconditionally stable for the Burger's equation.
Further, the line-relaxation version of the DDADI algorithm gives the eigenvalues
of the amplification matrix that approach the fully implicit limit.

On the basis of encouraging stability results, four algorithms indicated above
were then applied to solve the TLNS equations for flows through nozzles. Of the
three approximate techniques, the DDADI scheme suggested by Lombard [19] is
shown to require the least number of iterations, but in terms of CPU time, the
PNS-ADI scheme developed in this study is as fast as the DDADI scheme. The
standard ADI factorization arising from traditional ADI schemes [8,9,10] proves to
be the most inefficient in terms of both the number of iterations and the CPU time
required. The direct method devised from the physics of high Reynolds number
viscous flows seems to be particularly suited for supersonic problems, but rapid
convergence of the DDADI and the PNS-ADI schemes allows them to surpass the
direct method in terms of CPU time required. However, the direct method has
proven to be more robust than any approximate schemes by noting that the CFL
number can be as high as 10'® without losing stability. Numerical experiments
regarding boundary conditions and Jacobian matrices have indicated that implicit
boundary conditions toge .er with true Jac'obians of the split lux play a decisive
role on convergence.

The solutions of present upwind-central differencing algorithms were compared

to those of MOC calculations, excellent agreements on the wall pressure distribution

and Mach number contours were demonstrated.
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For the first time, proper downstream boundary conditions are applied for
the subsonic portion of the outflow. These downstream boundary conditions were
shown to be capable of allowing supersonic solutions to respond to nozzle back
pressure conditions as they should do in realistic situation. The caiculations with
recirculation and reentry flows at the exit plane caused no difficulty, and the resulta
showed that different exit pressures would alter the nozzle boundary layer charac-
teristics near the exit plane. The extrapolation conditions that are normalily used
were shown to give solutions corresponding to one specific back pressure condition.
A series of resuits showing the effects of variations in back pressures, wall tempera-
tures, and nozzle Reynolds numbers are given for both a conical nozzle and a high
expansion ratio contoured nozzle. The effects of turbulence on supersonic nozzle
flows with separation were investigated by solving the Reynolds averaged Naviet-
Stokes equations with the Baldwin and Lomax model. The global characteristics of

turbulent flows were properly resolved by using this algebraic turbulence model.

The results of testing on the global mass conservation indicate that global
mass errors can be kept below 1% when fully conservative form is used, while quasi

conservative form may give a global error as large as 30% even in flowfields without

discontinuities.

Along with the development of Navier-Stokes algorithms, the parabolized pro-
cedures were also investigated. Unlike the traditional approach, the PNS procedure

was obtained from the time-dependent general flux-vector split TLNS equations,

for which the stream: “se flux vector has been split into two parts corresponding

lo downstreamn and upstream characteristics. By omitting the parts with upstream
characteristics, the whole equation set was inade parabolic in the streamwise di-
rection. With this approach, a distinct PNS formulation can be obtained for each

type of flux-vector splitting considered. Two examples were chosen [or demonstra-
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tion. The traditional PNS formulation is obtained by using a pressure gradient
spiitting. The use of characteristic-based flux splitting yields a PNS algorithm that
includes only the downstream characteristics. Stability results showed that this
characteristic-based PNS algorithm is stable for space-marching and numerical re-
sults indicated that it provides solutions that are identical to the classical pressure

gradient split PNS formulation and in excellent agreement with the TLNS solutions.

One advantage of the present PNS algorithm when compared to non-iterative
space-marching procedures is that the current approach requires no safety factor.
Comparisons of the pressure gradient splitting PNS calculations with the TLNS
soiutions show that the introduction of a safety factor deteriorates the solution
accuracy. The necessary local iterations on each £ plane for the time-iterative PNS
algorithm result in more computational time than the traditional non-iterative PNS
procedure. However, it has been shown that this CPU time deficit is partially offset
in that the local iterations allow the £ derivative to be formulated in a conservative

form so that variable step sizes in £ can be used.

The global pressure iteration procedure in the traditional PN3 approaches has
been interpreted as a TLNS procedure. These mathematically and nhyaically well-
posed TLNS procedures based on approximate factorization are suggs1a¢ instead of

the traditi_nal global pressure iteration procedures based on an arbitrary relaxation

of the pressure field.

Numerical algorithms for computing viscous swirling nozzle flows have also been
studied by using time-iterative implicit schemes. The implicit ADI and the PNS-
ADI algorithms are utilized to solve transonic and supersonic swirling flows, respec-
tively. These algorithms prove to be equally efficient for swirling two-dimensional
calculations. The combined eflects of viscosity and swirling on the flowfield and

the integral nozzle performance are investigated for transonic and supersonic llows
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through mild to high expansion ratio nozzles. Viscous calculations are performed for
three nozzle geometries previously investigated by Dutton [34]. These results vali-
date the inviscid assumptions {or high Reynolds number Rows and show how rapidly
noztle performance deteriorates with the Reynolds number. For the high expansion
ratio contoured nozzle and the plug nozzle, the combined effects of swirling and
viscosity have significant influence on the flowfields and the nozzle performance.

Finally, the clgorithms developed for axisymmetric two-dimensional flows are
extended to solve the three-dimensional TLNS equations. These three-dimensional
algorith:ns are based upon the DDADI splitting for the streamwise flux vector and
an additional approximate factorization of the left hand side operator. The optimum
CFL number reduces to the order of 10 and it gives slow convergence due to this
approximate factorization. Both the PNS and TLNS procedures are formulated for
three-dimensional calculations. Typically, acceptable convergence can be achieved
Ly 40 local iterations for the PNS algorithm. Although this convergence rate is not
competitive with that of two-dimensional algorithms, these three-dimensional algo-
rithms prove to be robust and are insensitive to grid-stretching along the streamwise
direction.

Az a final comment, although all the results shown in this study are computa-
tions of internal flowfields of nozzles, all numerical algnrithrns developed here are

applicable to external flows as well.
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